Chemistry SL P1 2006 May School Level 12th IB Diploma Programme **Board Exam** International Baccalaureate (IB Board) Solved

shaalaa.com

IB DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI M06/4/CHEMI/SPM/ENG/TZ0/XX+

CHEMISTRY STANDARD LEVEL PAPER 1

Thursday 18 May 2006 (afternoon)

45 minutes

INSTRUCTIONS TO CANDIDATES

- · Do not open this examination paper until instructed to do so.
- · Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.

2206-6104

12 pages

0	2 He 4.00	10 Ne 20.18	18 Ar 39.95	36 Kr 83.80	54 Xe 131.30	86 Rn (222)			
2		0	17 CI 35.45 3	35 Br 79.90 8	53 I 126.90 1:	85 At (210) (71 Lu 174.97	103 Lr (260)
9		8 0 16.00	16 S 32.06	34 Se 78.96	52 Te 127.60	84 Po (210)		70 Yb 173.04	102 N0 (259)
o,		7 N 14.01	15 P 30.97	33 As 74.92	51 Sb 121.75	83 Bi 208.98		69 Tm 168.93	101 Md (258)
4		6 C 12.01	14 Si 28.09	32 Ge 72.59	50 S n 118.69	82 Pb 207.19		68 Er 167.26	100 Fm (257)
3		5 B 10.81	13 AI 26.98	31 Ga 69.72	49 In 114.82	81 TJ 204.37		67 Ho 164.93	99 Es (254)
		/		30 Zn 65.37	48 Cd 112.40	80 Hg 200.59	\sim	66 Dy 162.50	98 Cf (251)
le				29 Cu 63.55	47 Ag 107.87	79 Au 196.97	. /	65 Tb 158.92	97 Bk (247)
The Periodic Table			-	28 NI 58.71	46 Pd 106.42	78 Pt 195.09		64 Gd 157.25	96 Cm (247)
Period			-	27 Co 58.93	45 Rh 102.91	77 Ir 192.22		63 Eu 151.96	95 Am (243)
The			10	26 Fe 55.85	44 Ru 101.07	76 Os 190.21		62 Sm 150.35	94 Pu (242)
			5	25 Mn 54.94	43 Tc 98.91	75 Re 186.21		61 Pm 146.92	93 Np (237)
	kumber	Mass		24 Cr 52.00	42 Mo 95.94	74 W 183.85		60 Nd 144.24	92 U 238.03
	Atomic Number	Element Atomic Mass	-	23 V 50.94	41 Nb 92.91	73 Ta 180.95		59 Pr 140.91	91 Pa 231.04
		3		22 Ti 47.90	40 Zr 91.22	72 Hf 178.49		58 Ce 140.12	90 Th 232.04
			-	21 Sc 44.96	39 Y 88.91	57 † La 138.91	89 ‡ Ac (227)	*	++
7		4 Be 9.01	12 Mg 24.31	20 Ca 40.08	38 Sr 87.62	56 Ba 137.34	88 Ra (226)		
1	1 H 1.01	3 Li 6.94	11 Na 22.99	19 K 39.10	37 Rb 85.47	55 Cs 132.91	87 Fr (223)		

2206-6104

Visit www.shaalaa.com for more question papers.

- 2 - M06/4/CHEMI/SPM/ENG/TZ0/XX

- 1. Which contains the same number of ions as the value of Avogadro's constant?
 - A. 0.5 mol NaCl
 - B. 0.5 mol MgCl₂
 - C. 1.0 mol Na₂O
 - D. 1.0 mol MgO
- 2. A reaction occurring in the extraction of lead from its ore can be represented by this unbalanced equation:

- 3 -

$$_PbS + _O_2 \rightarrow _PbO + _SO_2$$

When the equation is balanced using the smallest possible whole numbers, what is the coefficient for O₂?

- A. 1
- B. 2
- C. 3
- D. 4
- 3. The equation for a reaction occurring in the synthesis of methanol is

 $\rm CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$

What is the maximum amount of methanol that can be formed from 2 mol of carbon dioxide and 3 mol of hydrogen?

- A. 1 mol
- B. 2 mol
- C. 3 mol
- D. 5 mol

2206-6104

Turn over

- 4. Which solution contains 0.1 mol of sodium hydroxide?
 - A. 1 cm3 of 0.1 mol dm3 NaOH
 - B. 10 cm3 of 0.1 mol dm3 NaOH
 - C. 100 cm3 of 1.0 mol dm3 NaOH
 - D. 1000 cm³ of 1.0 mol dm⁻³ NaOH
- 5. How many neutrons are there in the ion ${}^{18}O^{2-}$?
 - A. 8
 - B. 10
 - C. 16
 - D. 20

6. What is the electron arrangement of silicon?

- A. 2.4
- B. 2.8
- C. 2.8.4
- D. 2.8.8
- 7. Which statement is correct for a periodic trend?
 - A. Ionization energy increases from Li to Cs.
 - B. Melting point increases from Li to Cs.
 - C. Ionization energy increases from F to I.
 - D. Melting point increases from F to I.

2206-6104

- 8. Which reaction results in the formation of a coloured substance?
 - A. $2\text{Li}(s) + 2\text{H}_2\text{O}(l) \rightarrow 2\text{LiOH}(aq) + \text{H}_2(g)$
 - B. $2Na(s) + Cl_2(g) \rightarrow 2NaCl(s)$
 - C. $Cl_2(g) + 2NaI(aq) \rightarrow 2NaCl(aq) + I_2(s)$
 - D. $Ag^+(aq) + Cl^-(aq) \rightarrow AgCl(s)$
- 9. Which statement is a correct description of electron loss in this reaction?

$2AI + 3S \rightarrow Al_2S_3$

- A. Each aluminium atom loses two electrons.
- B. Each aluminium atom loses three electrons.
- C. Each sulfur atom loses two electrons.
- D. Each sulfur atom loses three electrons.
- 10. Which molecule has the smallest bond angle?
 - A. CO₂
 - B. NH₃
 - C. CH₄
 - D. C₂H₄
- 11. In which substance is hydrogen bonding present?
 - A. CH₄
 - B. CH₂F₂
 - C. CH₃CHO
 - D. CH₃OH

2206-6104

Turn over

- 12. Which is a correct description of metallic bonding?
 - A. Positively charged metal ions are attracted to negatively charged ions.
 - B. Negatively charged metal ions are attracted to positively charged metal ions.

- 6 -

- C. Positively charged metal ions are attracted to delocalized electrons.
- D. Negatively charged metal ions are attracted to delocalized electrons.
- 13. In which changes is there an increase in the spacing between particles?
 - I. boiling
 - II. condensing
 - III. diffusion
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 14. A cylinder of gas is at a pressure of 40 kPa. The volume and temperature (in K) are both doubled. What is the pressure of the gas after these changes?

Ģ

- A. 10 kPa
- B. 20 kPa
- C. 40 kPa
- D. 80 kPa

2206-6104

- 15. Which statement about bond enthalpies is correct?
 - A. Bond enthalpies have positive values for strong bonds and negative values for weak bonds.

- 7 -

- B. Bond enthalpy values are greater for ionic bonds than for covalent bonds.
- C. Bond breaking is endothermic and bond making is exothermic.
- D. The carbon-carbon bond enthalpy values are the same in ethane and ethene.
- 16. An equation for a reaction in which hydrogen is formed is

$$CH_4 + H_2O \rightarrow 3H_2 + CO$$
 $\Delta H^{\odot} = +210 \text{ kJ}$

Which energy change occurs when 1 mol of hydrogen is formed in this reaction?

- A. 70 kJ of energy are absorbed from the surroundings.
- B. 70 kJ of energy are released to the surroundings.
- C. 210 kJ of energy are absorbed from the surroundings.
- D. 210 kJ of energy are released to the surroundings.
- 17. The equations and enthalpy changes for two reactions used in the manufacture of sulfuric acid are:

$$\begin{split} \mathrm{S(s)} + \mathrm{O}_2(\mathrm{g}) &\to \mathrm{SO}_2(\mathrm{g}) \quad \Delta H^{\oplus} = -300 \text{ kJ} \\ 2\mathrm{SO}_2(\mathrm{g}) + \mathrm{O}_2(\mathrm{g}) &\to 2\mathrm{SO}_3(\mathrm{g}) \quad \Delta H^{\oplus} = -200 \text{ kJ} \end{split}$$

What is the enthalpy change, in kJ, for the reaction below?

 $2S(s) + 3O_2(g) \rightarrow 2SO_3(g)$

A. -100

B. -400

- C. -500
- D. -800

2206-6104

Turn over

- **18.** Which reaction has the largest positive value of ΔS^{Θ} ?
 - A. $CO_2(g) + 3H_2(g) \rightarrow CH_3OH(g) + H_2O(g)$
 - B. $2Al(s) + 3S(s) \rightarrow Al_2S_3(s)$
 - C. $CH_4(g) + H_2O(g) \rightarrow 3H_2(g) + CO(g)$
 - D. $2S(s) + 3O_2(g) \rightarrow 2SO_3(g)$
- 19. The table shows the concentrations of reactants and products during this reaction.

	[A] / mol dm ⁻³	[B] / mol dm ⁻³	$[C] / mol dm^{-3}$	[D] / mol dm ⁻³
at the start	6	3	0	0
after 1 min	4	2	13.1	2

 $2A + B \rightarrow C + 2D$

- 8 -

The rate of reaction can be measured by reference to any reactant or product. Which rates are correct for this reaction?

- I. rate = $-2 \mod dm^{-3} \min^{-1}$ for A
- II. rate = $-1 \mod dm^{-3} \min^{-1}$ for B
- III. rate = $-1 \mod dm^{-3} \min^{-1}$ for C
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

2206-6104

20. A reaction occurs in four steps. The steps and their rates are shown in the table

Step	Rate
1	0.01 mol dm ⁻³ s ⁻¹
2	0.10 mol dm ⁻³ s ⁻¹
3	0.01 mol dm ⁻³ min ⁻¹
4	0.10 mol dm ⁻³ min ⁻¹

-9-

Which is the rate-determining step?

- Step 1 Α.
- Β. Step 2
- С. Step 3
- Step 4 D.
- 21. The equation for a reversible reaction used in industry to convert methane to hydrogen is shown below. 0

 $CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$ $\Delta H^{\ominus} = +210 \text{ kJ}$

Which statement is always correct about this reaction when equilibrium has been reached?

- The concentrations of methane and carbon monoxide are equal. Α.
- The rate of the forward reaction is greater than the rate of the reverse reaction. Β.
- The amount of hydrogen is three times the amount of methane. С.
- The value of ΔH^{\ominus} for the reverse reaction is -210 kJ. D.

Turn over

22. The equation for a reaction used in the manufacture of nitric acid is

$$4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(g)$$
 $\Delta H^{\ominus} = -900 \text{ kJ}$

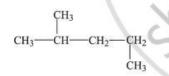
- 10 -

Which changes occur when the temperature of the reaction is increased?

Position of equilibrium	Value of K_c
shifts to the left	increases
shifts to the left	decreases
shifts to the right	increases
shifts to the right	decreases

- 23. Which substance reacts with dilute hydrochloric acid to produce hydrogen gas?
 - A. Mg
 - B. MgO
 - C. Mg(OH)₂
 - D. MgCO₃

24. Which change in [H⁺] causes the biggest increase in pH?

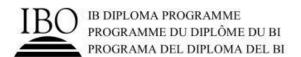

- A. A change in $[H^+(aq)]$ from 1×10^{-3} to 1×10^{-2} mol dm⁻³
- B. A change in $[H^+(aq)]$ from 1×10^{-3} to 1×10^{-4} mol dm⁻³
- C. A change in $[H^+(aq)]$ from 1×10^{-4} to 1×10^{-2} mol dm⁻³
- D. A change in $[H^+(aq)]$ from 1×10^{-4} to 1×10^{-6} mol dm⁻³

25. What are the oxidation numbers of the elements in the compound phosphoric acid, H₃PO₄?

	Hydrogen	Phosphorus	Oxygen
A. 🗌	+1	+1	-2
В.	+1	+5	-2
с. 🗌	+3	+1	-4
D.	+3	+5	

2206-6104

- 26. A voltaic cell is made from magnesium and iron half-cells. Magnesium is a more reactive metal than iron. Which statement is correct when the cell produces electricity?
 - A. Electrons are lost from magnesium atoms.
 - B. The concentration of Fe²⁺ ions increases.
 - C. Electrons flow from the iron half-cell to the magnesium half-cell.
 - D. Negative ions flow through the salt bridge from the magnesium half-cell to the iron half-cell.
- 27. A metallic object is electroplated with copper using a solution of copper(II) sulfate. Which statement is correct?
 - A. The positive electrode increases in mass.
 - B. The concentration of Cu²⁺ ions in the solution decreases.
 - C. Reduction occurs at the positive electrode.
 - D. The reaction occurring at the negative electrode is $Cu^{2+} + 2e^- \rightarrow Cu$.
- 28. What is the correct name of this compound?


- A. 1,3-dimethylbutane
- B. 2,4-dimethylbutane
- C. 2-methylbutane
- D. 2-methylpentane

2206-6104

Turn over

- **29.** Propane, C₃H₈, undergoes incomplete combustion in a limited amount of air. Which products are most likely to be formed during this reaction?
 - A. Carbon monoxide and water
 - B. Carbon monoxide and hydrogen
 - C. Carbon dioxide and hydrogen
 - D. Carbon dioxide and water
- 30. What is/are the product(s) of the reaction between ethene and hydrogen bromide?
 - A. CH₃CH₂Br
 - B. CH₃CH₂Br and H₂
 - C. CH2BrCH2Br
 - D. CH₂BrCH₂Br and H₂

2206-6104

M06/4/CHEMI/SPM/ENG/TZ0/XX/M

MARKSCHEME

May 2006

CHEMISTRY

Standard Level

Paper 1

2 pages

1.	_ <u>A</u> _	16.	_A_	31.		46.	
2.	<u> </u>	17.	_ <u>D</u>	32.		47.	
3.	<u> </u>	18.	<u> </u>	33.		48.	
4.	<u> </u>	19.	<u>_A</u>	34.		49.	
5.	<u>_B</u>	20.	<u>_C</u>	35.	_	50.	
6.	<u> </u>	21.	_ <u>D</u>	36.		51.	
7.	<u>D</u>	22.	<u>_B</u>	37.		52.	
8.	<u> </u>	23.	<u>_A</u>	38.	_	53.	(<u></u>)
9.	<u>_B</u>	24.	<u>D</u>	39.	À	54.	
10.	<u>_B</u>	25.	<u>_B</u>	40.	Æ)	55.	
11.	_ <u>D</u> _	26.	_A_	41)`	56.	
12.	<u> </u>	27.	_ <u>D</u> _	42.		57.	
13.	<u> </u>	28.	<u>D</u>	43.		58.	
14.	<u> </u>	29.	AO	44.	<u> </u>	59.	<u></u>
15.	<u>_C</u>	30.	A	45.		60.	
		10	2				