[Total No. of Pages: 02

B.Tech. (Sem. - 5th)

ELECTROMAGNETIC FIELD THEORY SUBJECT CODE: EE - 303

<u>Paper ID</u>: [A0414]

[Note: Please fill subject code and paper ID on OMR]

centre of rectangular loop of wire 'b' meter on one side and 'a' meter on other

Time: 03 Hours

.qms 1 to mermo 8 25 Maximum Marks : 60

Instruction to Candidates:

- 1) Section A is **Compulsory**.
- 2) Attempt any Four questions from Section B.
- 3) Attempt any **Two** questions from Section C.

Section - A

Q1)

 $(10 \times 2 = 20)$

- a) Differentiate between scalar field and vector field. Give examples.
 - b) Define Divergence theorem.
 - c) State Biot-savart law.
 - d) What do you mean by equipotential surfaces?
- e) State the conditions at a boundary between dielectric and conducting surface.
 - f) Give the expression for energy stored in static electric field.
 - g) What is Ampere's law?
 - h) What is displacement current? Does it exist in free space or not?
 - i) Define magnetic field intensity and give its relation with magnetic flux density.
 - j) What do you understand by homogeneous and isotropic medium?

Section - B

- Q2) State and prove Gauss's law.
- Q3) Write Maxwell's equation in time varying fields and give their interpretation.

ELECTROM: GIVE RICERED THEORY

- Q4) Find an expression for the magnetic flux density B at a distance 'h' above the centre of rectangular loop of wire 'b' meter on one side and 'a' meter on other side. The loop carries a current of 1 amp.
- Q5) State and prove Poynting theorem.
- Q6) Differentiate between linear, elliptical and circular polarization.

Section - C

 $(2 \times 10 = 20)$

- Q7) (a) Discuss analogies between electric and magnetic fields.
 - (b) Develop an expression for the potential difference at any point between spherical shells in terms of the applied potential employing Laplace's equation.
- Q8) (a) Differentiate between phase velocity and group velocity. Calculate the velocity of electromagnetic wave in a medium whose dielectric constant is 2.56.
- (b). A plane electromagnetic wave travelling in free space has an amplitude of E_0 equal to 50 μ V/m and the electric field vector at any point varies sinusoidally with time. What are the peak and average values of Poynting vector.
- 29) Write short notes on the following:
 - (a) Uniqueness theorem.
 - (b) Reflection at surface of conducting medium.

