[This question paper contains 4 printed pages]

Your Roll No

7260 J

M.Sc. Operational Research/Sem. II

Paper-201 Mathematical Programming-II (Admissions of 2009 and onwards)

Time 3 Hours

Maximum Marks

70

(Write your Roll No on the top immediately on receipt of this question paper)

Attempt any five questions

All questions carry equal marks

1 (a) Let $f_i(x)$ (i=1,2,...,m) be convex functions defined on a convex set S Show that the set

$$X = \{x \mid x \in S, f_i(x) \le b_i, i = 1, 2, , m\}$$

is convex for any choice of scalars b_i , i = 1, 2, ..., m

(b) Let f(x) be a continuously differentiable function defined on a convex set S Show that the function f(x) is concave if and only if

$$f(x_2) \le f(x_1) + \nabla f(x_1)^t (x_2 - x_1)$$

for all $x_1, x_2 \in S$

7260

(2)

- (c) Show that any local minimizer, of a convex function f(x) defined on a convex set S, is a global minimizer
- (a) Explain Integer Programming Problem Derive Gomory's cut for a mixed integer linear programming problem
 - (b) Obtain an equivalent linear complementarity problem formulation of the following quadratic programming problem

Minimize
$$f(x) = C^t x + \frac{1}{2} x^t B x$$

subject to

$$Ax \le b$$

$$x \ge 0$$

All the symbols carry their usual meaning

3 Consider the following quadratic programming problem

Maximize
$$f(x) = 6x_1 + 4x_2 - 2x_1^2 - x_2^2$$

subject to

$$2x_1 + 3x_2 \le 6$$

$$3x_1 + 2x_2 \le 5$$

$$x_1, x_2 \ge 0$$

- (a) Write the dual problem
- (b) Use Wolfe's method to find an optimal solution of the given problem

4 (a) Solve the following integer linear programming problem

Maximize
$$Z = 3x_1 + 4x_2$$

subject to

$$3x_1 - x_2 \le 12$$

$$3x_1 + 11x_2 \le 66$$

$$3x_1, x_2 \ge 0 \text{ and integers}$$

(b) Determine whether the function

$$f(x) = 6x_1 + 4x_2 - 4x_1^2 - 2x_2^2 + 8x_1x_2$$

is convex, concave or neither

5 (a) State Bellman's principle of optimality and apply it to solve the problem

Maximize
$$Z = x_1 - x_2 - x_n$$

subject to

$$x_1 + x_2 + x_n = d$$

 $x_1, x_2, x_n \ge 0$

(b) A vehicle can carry a load of 10 tonne Three types of products are available for shipment. Their unit weights and values are given in the following table.

Product	Value	Unit Weight
Type	(Rs)	(Ton)
A	20	1
В	50	2
C	60	3

7260 (4)

Write the mathematical model that will determine the loading of each type in order to maximize the total value Solve the model using dynamic programming technique

6 (a) Obtain the Kuhn Tucker's optimality conditions for the problem

Maximize
$$f(x)$$

subject to $g_i(x) \le 0 \quad (i = 1, 2, ..., m)$

State the assumptions under which the obtained conditions are sufficient as well

(b) Consider the problem

Minimize
$$f(x) = \left(x_1 - \frac{9}{4}\right)^2 + (x_2 - 2)^2$$
subject to
$$x_2 - x_1^2 \ge 0$$
$$x_1 + x_2 \le 6$$
$$x_1, x_2 \ge 0$$

Write the KT optimality conditions and verify that these conditions are satisfied at the point $\bar{x} = \left(\frac{3}{2}, \frac{9}{4}\right)$

Write the Dorn's dual of a general quadratic programming problem State and prove the duality theorems for the primal-dual pair