	CS/B.Tec	M-4/EE-4	11/2010
Invigilator's Signature :		1	
Roll No. :		 	
Name :		 	

CS/B.Tech (IT)/SEM-4/EE-411/20 2010 CONTROL SYSTEMS

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following:

 $10 \times 1 = 10$

- i) If a closed loop control system operates at a point on JW axis, the system is
 - a) overdamped
- b) underdamped
- c) marginally stable
- d) unstable.
- ii) Signal flow graph is used to obtain the
 - a) stability of the system
 - b) transfer function of the system
 - c) controllability of the system
 - d) observability of the system.

[Turn over

CS/E

3.Tec	ch (IT)	/SEM-4/EE-411/2010				
iii)	Addition of a pole to the closed loop transfer function					
	a)	increases rise time b) decreases rise time				
	c)	increases overshoot d) has no effect.				
iv)	The	state transition matrix is given by				
, *ij	a)	$[SI - A]$ b) $\{(SI - A)^{-1}\}$				
	c)	$L\{(SI-A)^{-1}\}$ d) $L^{-1}\{(SI-A)^{-1}\}$.				
v)	An a	.c. servomotor is basically a				
	a)	universal motor				
	b)	single phase induction motor				
	c)	two phase induction motor				
	d)	three phase induction motor.				
vi)	A po	otentiometer converts linear/rotational displacemen				
	into					
	a)	current b) power				
	c)	voltage d) torque.				
vii)	Stat	e variable approach converts an nth order system				
	into					
	a)	n second order differential equations				
,	b)	two differential equations				
	c)	n first order differential equations				

a higher order system.

viii) In control system, we have the following methods for system analysis:

- i) Nyquist criterion
- ii) Bode plot
- iii) Root locus
- iv) Routh-Hurwitz criterion

Which of the above are in time domain?

- a) (i) and (ii)
- b) (ii) and (iii)
- c) (i) and (iii)
- d) (iii) and (iv).
- ix) The forward path gain of a control is 2.5 and the polezero configuration of the overall transfer function is shown in Fig. The following overall transfer function is

Fig.

a)
$$\frac{2 \cdot 5(s+1)}{s(s+2)(s+3)}$$

b)
$$\frac{2 \cdot 5(s+2)}{s(s+1)(s+3)}$$

c)
$$\frac{2 \cdot 5(s+3)}{s(s+1)(s+3)}$$

d) none of these.

x) The close loop gain of the system in the given figure is

Fig

a) 6

b) -6

c) $\frac{3}{2}$

- d) none of these.
- xi) An increase in damping ratio
 - a) increases rise time
 - b) decreases rise time
 - c) does not affect rise time
 - d) keeps the time within limits.
- xii) A second order system has damping ratio $\xi = 0.9$. The system is
 - a) underdamped
 - b) overdamped
 - c) critically damped
 - d) insufficient information for any prediction.

GROUP - B (Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Derive the closed loop transfer function of an armature controlled DC shunt motor.
- 3. Determine the transfer function C/R for the system given below.

4. Find the condition for stability for the system whose characteristic equation is given below:

$$s^3 + (k+0.5)s^2 + 4ks + 50 = 0$$

5. The forward path transfer function of a unity feedback system is given by:

$$G(s) = \frac{5(s^2 + 2s + 100)}{s^2(s+5)(s^2 + 3s + 10)}$$

Determine step, ramp & parabolic error co-efficients. Also determine the type of the system.

6. Obtain the state transition matrix of the following system:

$$\frac{\mathrm{d}x_1}{\mathrm{d}t} = x_1 + u$$

$$\frac{\mathrm{d}x_2}{\mathrm{d}t} = x_1 + x_2 + u.$$

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3\times15=45$

7. A unity feedback control system has a open loop transfer function $G(s) = \frac{k}{s(s+3)(s^2+2s+2)}$. Sketch the root lous of the

system by determining the following:

- a) Centroid, number & angle of asymptotes.
- b) Angle of departure of root loci from the poles.
- c) Break-away point.
- d) The value of k & the frequency at which the root locus crosses JW axis.
- 8. Construct the Bode plot for a unity feedback control system having $G(s) = \frac{10(s+10)}{s(s+2)(s+5)}$. From the plot obtain the gain

margin, phase margin, gain cross-over frequency & phase cross-over frequency. Comment on the stability of the system.

- 9. a) State the Nyquist stability criterion. How is Nyquist criterion different from Routh-Hurwitz criterion?
 - b) What do you mean by relative stability?
 - c) The open loop transfer function of a unity feedback control system is given by:

$$G(s) = \frac{s + 0.25}{s^2(s+1)(s+0.5)}$$

Determine the closed loop stability by applying Nyquist criterion. (3+2)+3+7

10. a) Obtain the transfer function of the system from the given state model:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} -5 & -1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 2 \\ 5 \end{bmatrix} u$$

$$Y = \begin{bmatrix} 1, & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

- b) Find z-transform of the following function $F(s) = \frac{1}{s(s+a)}$.
- c) Determine the pulse transfer function of the sampled data control system shown below. The sampling time is T = 0.5 second.

Fig.

5 + 3 + 7

11. Write short notes on any three of the following:

 3×5

- a) PID controller.
- b) Sample & Hold circuits.
- c) Tachometer.
- d) Transient response of a 2nd order system.

Ω