B.Tech. Degree VI Semester Examination June 2005

CS 603 COMPUTER GRAPHICS

(2002 Admissions)

Time:	3 Hours	Maximum Mar	rks: 100
I	a)	Differentiate between Raster scan and Random scan display systems.	(10)
	b)	Explain any four logical input devices.	(10)
		OR	
II	a)	Explain Bresenham's circle drawing algorithm.	(10)
	b)	Explain scan line algorithm for filling a polygon.	(10)
Ш	a)	Explain Cohen-Sutherland algorithm for clipping a line against a regular window.	(10)
	b)	Give homogeneous co-ordinate transformation matrices for the following:	,
		i) Shifting the image to the right by 3 units and up by 5 units	
		ii) Rotation by 45° counter clockwise	
		iii) Rotation by 90° clockwise	
		iv) Scaling the image in the x-direction to be twice and in	(10)
		the y-direction to be one half OR	(10)
IV	a)	Explain window-to-viewport co-ordinate transformations.	(10)
• •	b)	Given a triangle $A(0,0)$, $B(1,1)$ and $C(6,2)$. Write down the transformation matrix	(10)
1	-,	to magnify the triangle to twice its size keeping C(6,2) fixed.	(10)
			40.00
V	a)	Explain Bezier curves and B-Spline curves.	(10)
	b)	What is a Hermite polynomial? Explain its use.	(10)
VI ·		F Ifly explain 3-D clipping and its hardware implementation.	(20)
A1 .		r why explain 3-12 chipping and its nardware implementation.	(20)
VII	a)	Explain BSP trees and Octree methods for hidden surface removal.	(10)
1.	b)	Differentiate between object space and image space algorithm.	(10)
S 27 FT	- \	OR	(10)
VIII	a)	Explain scan line method for hidden surface removal.	(10)
	b)	Explain Z-buffer and area subdivision method for removing hidden surfaces.	(10)
IX	a)	Explain Phong and Gourad shading models.	(10)
	b)	Discuss about RGB and CMY colour models.	(10)
		OR CF SCIENCE CO	ig #
X,		Explain ray tracing algorithm for surface rendering.	(20)
		*** \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	