

B(S 098(U)

Box Pech. Degree (F.T) III Semester Examination in Mechanical Engineering (CAD/CAM), March 1999

ME 302 FLUID MECHANICS AND MACHINERY

(All questions carry equal marks)

Time: 3 Hours

Max. Marks: 100

- I a) Distinguish between the following
 - (i) Steady flow and unsteady flow
 - (ii) Uniform flow and nonuniform flow
 - (iii) Rotational and irrotational flow
 - b) Verify whether the following flow field is rotational. If so, determine the components of rotation about various axes.

$$u = xyz, \ v = zx, \ w = \frac{1}{2} yz^2 - xy$$

- c) Derive an expression for measurement of pipe flow using a venturimeter
- d) A venturimeter of throat diameter 5 cm is fitted to a 12.5 cm diameter water pipe line. The coefficient of discharge is 0.96. Calculate the flow in the pipe line when the reading on a mercury-water differential u-tube manometer connected to the upstream and throat sections shows a reading of 20 cm.
- II a) Explain the terms: cohesion, adhesion, Newtonian fluid, kinematic viscosity.
 - b) The velocity distribution in a viscous flow over a plate is given by $u=4y-y^2$ where u is the velocity in m/s at distance y from the plate. Given coefficient of dynamic viscosity is 1.5 Pa.s, determine the shear stress at y=0 and y=2.0 m

OR

c) Derive expressions for the total pressure and centre of pressure on an inclined plane immersed surface.

2

- d) A rectangular plate 0.6 m wide and 1.2 m deep lies with in water such that the plane is inclined at 45° to the horizontal and tap edge is 0.70 m below water surface. Determine the total pressure force on one side of the plate and the location of the centre of pressure.
- III a) Briefly explain the concept of geometric, kinematic and dynamic similitude.
 - b) Show by dimensional analysis, for a completely submerged body, the drag force is $F_D = \rho 1^2 V^2 \phi \left(\frac{\rho v 1}{\mu}\right)$ where $\rho = \text{mass density of fluid}$ 1 = characteristic length v = velocity of flow $\mu = \text{viscosity of the fluid}$

OR

- c) The discharge through a pump (Q) depends on shaft work (gH), power (p), speed (N), characteristic length (D), fluid density (p) and viscosity (μ). Obtain a set of significant dimensional parameters.
- d) The capillary rise h in a tube of radius R depends on specific weight γ and surface tension σ of the fluid. Perform dimensional analysis.
- IV a) Derive an expression for the force of a jet impinging on a moving curved vane.
 - b) A jet of water having a velocity of 30 m/s impinges on a series of vanes with a velocity of 15 m/s. The jet makes an angle 30° to the direction of motion of vanes while entering and leaves at an angle of 120°. Sketch the velocity triangles at entrance and exit and determine
 - (i) the angle of vane tips so that water enters and leaves without shock
 - (ii) the work done per kg of water entering the vanes.

OR

- c) Derive an expression for the work done by an impulse turbine.
- d) A pelton wheel working under a head of 500 m produces 13,000 kw at 430 rpm. The efficiency of the wheel is 85%. Determine the discharge of the turbine and the diameter of the wheel. Assume suitable data.
- V a) Explain the working of a centrifugal pump.
 - b) A centrifugal pump delivers water against a net head of 10 m at a design speed of 1000 rpm. The vanes are curved backwards and make an angle of 30° with the tangent at the outer periphery. the impeller diameter is 30 cm and has a width of 5 cm at the outlet. Determine the discharge of the pump if the manometric efficiency is 95%

OR

- c) Briefly describe cavitation in pumps and its significance.
- d) Write a note on gear pumps and rotary piston pumps.
