[4062]-142

S.E. (Electrical) (I Sem.) EXAMINATION, 2011

MATERIAL SCIENCE

(2008 PATTERN)

Time: Three Hours

Maximum Marks: 100

- **N.B.** :— (i) Answers to the two Sections should be written in separate answer-books.
 - (ii) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or
 Q. No. 4, Q. No. 5 or Q. No. 6 from Section I.
 - (iii) Answer Q. No. **7** or Q. No. **8**, Q. No. **9** or Q. No. **10**, Q. No. **11** or Q. No. **12** from Section II.
 - (iv) Figures to the right indicate full marks.
 - (v) Use of logarithmic table, slide rule and electronic calculator is allowed.
 - (vi) Assume suitable data, if necessary.

Physical Constants:

- (1) Angstrom Unit (AU) = 1×10^{-10} metres.
- (2) Boltzmann's constant (K) = 1.38×10^{-23} Joule-degree⁻¹.
- (3) Charge on electron (e) = 1.601×10^{-19} coulombs.
- (4) Mass of electron $(m) = 9.107 \times 10^{-31}$ kg.
- (5) Permeability of free space $(m_0) = 4p \times 10^{-7}$.
- (6) Mass of proton $(m_p) = 1.627 \times 10^{-27}$ kg.

Velocity of light (C) = $2.998 \times 10^{+8}$ metre/second. (7)Electron volt (eV) = 1.602×10^{-19} Joules. (8)Debye unit = 3.33×10^{-30} coulomb-metre. (9)Dielectric constant of free space (m₀) = 8.85×10^{-12} farad-(10) $metre^{-1}$. **SECTION I** Derive Clausius-Mosotti relation from the first principle applied (a)to dielectric materials. State the assumptions. [8] Calculate the electronic polarizability of Argon atom. Given (b) $\hat{1}_r = 1.0024$ at NTP and N = 2.8 × 10^{25} atoms/m³. [4]What is meant by loss tangent as referred to polar dielectrics? (c) Give its significance. [4] OrWrite different materials used for photo-voltaic cell. With neat (a)sketch describe its construction and working principle. [8] [8]

(b) Explain the following:

- (i)Ferro-electricity
- Electronic polarization. (ii)
- 3. Discuss the insulating materials used for : [8] (a)
 - (*i*) Power transformer
 - (ii)Line insulators.

1.

2.

		any one in detail. [8]									
Or												
4.	(a)	State the properties and applications of: [8]									
		(i) SF ₆ gas										
		(ii) Ceramics										
		(iii) Asbestos										
		(iv) Transformer oil.										
	(b)	What is meant by Townsend's primary and secondary ionization	1									
		coefficient? Explain various factors affecting the breakdown	1									
		strength of solid insulating materials. [8	1									
5.	(a)	Explain classification of magnetic materials on the basis	s									
		of distribution of dipole moments. Give application of each	1									
	(b)	class. [8]									
		Differentiate between:										
		(i) Soft and hard magnetic materials [5]									
		(ii) Permeability and magnetic susceptibility. [5]									
		Or										
6.	(a)	What is Curie temperature for ferromagnetic material? Explain	1									
		spontaneous magnetization and Curie-Weiss law. [9]									
[4062	2]-142	3 P.T.O	١.									

State different mechanisms of breakdown in vacuum. Explain

(*b*)

		(i) Magnetic recording materials	[5]									
		(ii) Compact discs.	[4]									
SECTION II												
7.	State	e the properties and applications of :	16]									
	(i)	Tungsten										
	(ii)	Eureka										
	(iii)	Kanthal										
	(iv)	Nichrome.										
		Or										
8.	(a)	Why is carbon prefer <mark>red for brushes in electric machines</mark> ?	[4]									
	(<i>b</i>)	(b) What are the groups into which solders are grouped? Gi										
		their applications.	[4]									
	(c)	Describe in brief the properties and applications of aluminium	um									
		as conductive material.	[4]									
	(d)	Write a short note on 'Thermocouples'.	[4]									
9.	(a)	What are carbon nanotubes? Discuss their electrical, mechanic										
		and vibrational properties. Give some applications of carbon										
		nanotubes.	10]									
	(<i>b</i>)	Write a short note on 'BN nanotubes'.	[6]									
[4062]-142		4										

(b) Write short notes on:

10.	Write	short	notes	on	:	[:	16]
-----	-------	------------------------	-------	----	---	----	-----

- (i) Single electron transistor
- (ii) Molecular machine
- (iii) Nano wire
- (iv) Carbon clusters.
- (a) With a neat connection diagram, explain the method for determining dielectric strength of transformer oil as per IS Code of Practice.What inferences will you draw from the test? [10]
 - (b) What is partial discharge of a dielectric? Explain a method to determine the partial discharge of solid dielectric in laboratory. [8]

Or

- 12. (a) With a neat connection diagram explain the method for measurement of dielectric strength of air as per IS Code of practice. What inferences will you draw from this test? [10]
 - (b) Explain loss tangent in dielectric materials. Describe the method of measurement of tand of a dielectric by schering bridge as per IS code of practice. [8]