Code No: R059210401

II B.Tech I Semester Regular Examinations, November 2007 PROBABILITY THEORY AND STOCHASTIC PROCESS

(Common to Electronics & Communication Engineering, Electronics & Telematics and Electronics & Computer Engineering)

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) With an example define and explain the following:
 - i. Equality likely events
 - ii. Exhaustive events.
 - iii. Mutually exclusive events.
 - (b) In an experiment of picking up a resistor with same likelihood of being picked up for the events; A as "draw a 47 Ω resistor", B as "draw a resistor with 5% tolerance" and C as "draw a 100 Ω resistor" from a box containing 100 resistors having resistance and tolerance as shown below. Determine joint probabilities and conditional probabilities. [6+10]

<u>Table 1</u>

Number of resistor in a box having given resistance and tolerance.

Resistance(Ω)	<u>Tolerance</u>
	5% 10% Total
22	10 14 24
47	28 16 44
100	24 8 32
Total	62 38 100

- 2. (a) What is binomial density function? Find the equation for binomial distribution function.
 - (b) What do you mean by continuous and discrete random variable? Discuss the condition for a function to be a random variable. [6+10]
- 3. (a) Define moment generating function.
 - (b) State properties of moment generating function.
 - (c) Find the moment generating function about origin of the Poisson distribution. [3+4+9]
- 4. (a) Define conditional distribution and density function of two random variables X and Y
 - (b) The joint probability density function of two random variables X and Y is given by

$$f(x,y) = \begin{cases} a(2x+y^2) & 0 \le x \le 2, & 2 \le y \le 4 \\ 0 & elsewhere \end{cases}$$
. Find

Code No: R059210401

- i. value of 'a'
- ii. $P(X \le 1, Y > 3)$. [8+8]
- 5. (a) let X_i , i = 1,2,3,4 be four zero mean Gaussian random variables. Use the joint characteristic function to show that E $\{X_1 \ X_2 \ X_3 \ X_4\} = \mathbb{E}[X_1 \ X_2] \ \mathbb{E}[X_3 \ X_4] + \mathbb{E}[X_1 X_3] \mathbb{E}[X_2 X_4] + \mathbb{E}[X_2 X_3] \ \mathbb{E}[X_1 X_4]$
 - (b) Show that two random variables X_1 and X_2 with joint pdf. $f_{X_1X_2}(X_1, X_2) = 1/16 |X_1| < 4, 2 < X_2 < 4$ are independent and orthogonal.[8+8]
- 6. A random process $Y(t) = X(t) X(t + \tau)$ is defined in terms of a process X(t) that is at least wide sense stationary.
 - (a) Show that mean value of Y(t) is 0 even if X(t) has a non Zero mean value.
 - (b) Show that $\sigma Y^2 = 2[R_{XX}(0) R_{XX}(\tau)]$
 - (c) If $Y(t) = X(t) + X(t + \tau)$ find E[Y(t)] and σY^2 . [5+5+6]
- 7. (a) If the PSD of X(t) is Sxx(ω). Find the PSD of $\frac{dx(t)}{dt}$
 - (b) Prove that $S_{xx}(\omega) = S_{xx}(-\omega)$
 - (c) If $R(\tau) = ae^{|by|}$. Find the spectral density function, where a and b are constants. [5+5+6]
- 8. (a) A Signal $x(t) = u(t) \exp(-\alpha t)$ is applied to a network having an impulse response $h(t) = \omega u(t) \exp(-\omega t)$. Here $\alpha \& \omega$ are real positive constants. Find the network response? (6M)
 - (b) Two systems have transfer functions $H_1(\omega)$ & $H_2(\omega)$. Show the transfer function $H(\omega)$ of the cascade of the two is $H(\omega) = H_1(\omega) H_2(\omega)$.
 - (c) For cascade of N systems with transfer functions $H_n(\omega)$, n=1,2,.... N show that H(ω) = $\pi H_n(\omega)$. [6+6+4]
