Poll No.

Total No. of Questions: 09]

may 08

[Total No. of Pages: 02

Paper ID [EC202]

(Please fill this Paper ID in OMR Sheet)

B.Tech. (Sem. - 4th)

ANALOG ELECTRONICS (EC - 202)

Time: 03 Hours

Maximum Marks: 60

Instruction to Candidates:

- 1) Section A is Compulsory.
- 2) Attempt any Four questions from Section B.
- 3) Attempt any Two questions from Section C.

Section - A

Q1)

 $(10 \times 2 = 20)$

- a) What are the Physical origins of resistances in hybrid-pi model of CE Transistor Amplifier at high frequencies?
- b) What is an Oscillator? How does it differ from an Alternator?
- c) Which configuration of Bipolar Transistor is called as Emitter follower & why, for what purpose it is used?
- d) What are the advantages of Complimentary Symmetry Amplifier?
- e) What is the advantage of Stagger tuned Amplifier?
- f) What are the different types of configurations used in multistage amplifier circuits?
- g) What is the use of Bleeder in Zener Voltage Regulator?
- h) What are the Barkhusain conditions of oscillations in electronic systems? What is their significance?
- i) Define T model of a Bipolar Transistor.
- j) Define Line & Load Regulation.

Section - B

 $(4^{*}\times 5=20)$

Q2) Find (a) feedback ratio (b) feedback factor (c) voltage gain without feedback (d) voltage gain with feedback for a circuit given below. Assume transistor β = 200 and neglect V_{be}.

R-55 [2058]

P.T.O.

- Q3) A CE connected amplifier has C_{cb} =5pF, C_{be} =12pF, h_{fe} =100, hi_{e} =1.5k Ω . Find the input capacitance to the circuit for a circuit collector resistance of 12k Ω .
- Q4) Explain how device Capacitances plays dominant role in CE Amplifier in high frequency region.
- Q5) What are the different types of -ve feedback? Explain each with block diagram.
- **Q6)** Draw and explain the working of push pull class-A Amplifier. What are its advantages & disadvantages?

Section - C

 $(2\times10=20)$

- Q7) In a Transistor Colpitt's oscillator we have L=100 μ H, L_{RFC}= 0.6mH, C₁= 0.001 μ F, C₂=10 μ F. Find (a) operating frequency (b) feedback fraction (c) minimum gain to sustain oscillations & Emitter Resistance if R_c=2.5k Ω .
- Q8) Draw and explain the working of R-C phase shift oscillator and also derive an expression for its frequency of oscillations.
- Q9) Write a note on following:
 - (a) Miller Effect.
 - (b) Transistor series Regulators.