Code: D-06

Subject: BASIC ELECTRONICS

December 2005

Time: 3 Hours

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or best alternative in the following:

(2x10)

- a. The colour code of a resistor of nominal value $2.7K\Omega \pm 10\%$ is
 - (A) Red, violet, red and silver.
- **(B)** Red, violet, yellow and gold.
- (C) Red, violet, orange and silver.
- (D) Red, violet, red and gold.
- b. Capacitor that can have the highest capacitance value is
 - (A) Mica

(B) Paper

(C) Electrolytic

- (D) Ceramic
- c. The equivalent current-source representation for a voltage-source with open circuit voltage 12 V and internal resistance 3 ohms is
 - (A) a current-source of strength 4A in shunt with a resistance of 6Ω .
 - **(B)** a current –source of strength 4A in series with a resistance of 3Ω .
 - (C) a current-source of strength 4A in shunt with a resistance of 3 ohms.
 - **(D)** A current-source of strength 4A in shunt with a resistance of 36 ohms.
- d. An intrinsic semiconductor at absolute zero temperature
 - (A) has a large number of holes.
 - **(B)** behaves like an insulator.
 - **(C)** behaves like a metallic conductor.
 - **(D)** has few holes and same number of electrons.
- e. The current flow through a Ge PN junction diode with a forward bias of 0.22 Volt and a reverse saturation current of 1 ma at 25°C is around
 - **(A)** 6.3 A

(B) 5.22 A

(C) 4 mA

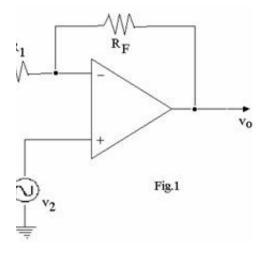
- **(D)** 5.1 mA
- For the operation of a depletion-type N-MOSFET, the gate voltage has to be
 - (A) low positive

(B) high positive

(C) high negative

- (D) zero
- The typical operating voltage for LED's ranges from
 - (A) 0.2 V to 0.6 V.

(B) 6 V to 10 V.


(C) 1.5V to 2.5 V.

- **(D)** 9 V to 10 V.
- h. Capacitors for integrated circuits
 - (A) cannot be made using diffusion techniques.
 - **(B)** can be made with very high values of capacitance.
 - **(C)** are always discrete components connected externally.
 - (**D**) can be made using silicon dioxide as the dielectric.
- The magnitude of variation in the output voltage for a 10 V regulated dc power supply of 0.002% regulation will be
 - **(A)** 0.2 mV.

(B) 0.002 mV.

(C) 0.02 mV.

- **(D)** $0.2 \, \mu V$.
- For the circuit shown in Fig.1, the output voltage is given by

(A)
$$v_0 = \frac{R_F}{R_1} (v_2 - v_1)$$

(A)
$$v_o = \frac{R_F}{R_1} (v_2 - v_1)$$
.
(B) $v_o = \frac{R_F}{R_1} (v_2 - v_1) - v_2$.

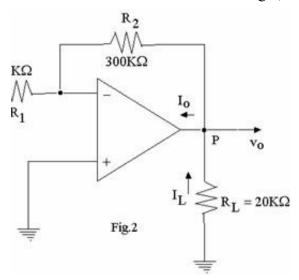
(C)
$$v_o = \frac{R_F}{R_1} (v_2 - v_1) + v_2$$
.
(D) $v_o = (v_2 - v_1) / (R_1 + R_F)$.

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. What is a passive circuit element? Name the most commonly used passive circuit elements. Briefly explain the following:
 - (i) Thin film resistors.
 - (ii) Wire-wound resistors.

(8)

- b. Describe the V-I characteristic of a practical voltage source. Find the largest practical value of load resistance to provide constant current from a current source with $I_s = 30 \text{mA}$ and $R_s = 15 \text{K}\Omega$. Comment on the variation of current from the short-circuited value. (8)
- Q.3 a. What is an N-type semiconductor? Write its energy band diagram. (5)
 - b. An intrinsic semiconductor (Si) has 5×10^{28} atoms/ m³ at 20° C room temperature. There are 1.5×10^{16} electron-hole pairs at this temperature. If the conductivity increases at the rate of 5% per degree centigrade, find the conductivity of Si at 34° C. Take the mobility of hole and electron as 0.048 m²/volt sec and 0.135 m²/volt sec, respectively. (5)
 - c. What is a PN junction? Draw its circuit symbol. What is the convention followed in writing its symbol? Illustrate its characteristic and make it self explanatory.
 (6)
- Q.4 a. Explain the operation of a two-diode full wave rectifier circuit. (7)
 - b. Briefly explain half-wave voltage doubler circuit with neat illustrations. (5)
 - c. A 4:1 transformer supplies a bridge rectifier that is driving a load of 200 ohms. If the transformer input is 230 V/ 50 Hz supply, calculate the dc output voltage, PIV, and the output frequency. Assume the rectifier diodes to be ideal.
- Q.5 a. How are Zener diodes specified? Define the important specification factors for the device. (5)


	b.	Establish the theory of a Zener diode shunt regulator. (7)
	c.	For a Zener shunt regulator, if $V_Z = 10V$, $R_S = 1K\Omega$, $R_L = 2K\Omega$ and the input voltage varies from 22 V to 40 V, find the minimum and maximum values of Zener current. (4)
Q.6	a.	What are the three modes in which a transistor can operate? Explain the meaning of each mode of operation. (9)
	b.	Draw the circuits of an NPN and a PNP transistor in CE configuration. Define the following: (i) CE dc current gain. (ii) CE ac current gain. (4)
	c.	A transistor has $\beta = 150$. Calculate the approximate collector and base currents if the emitter current is 10 mA. (3)
Q.7	a.	What is a field effect transistor (FET)? Which are the different types of FET's available? Draw the circuit arrangement for obtaining the drain characteristics of a JFET and explain the procedure for obtaining the above characteristic curves. Illustrate the typical drain characteristic curves for the device. (13)
	b.	The data sheet for an N-channel JFET provides the following: $I_{D,SS} = 20 \text{mA} , V_P = -8 V , g_{m,o} = 5000 \mu$
		Determine the values of the drain current and transconductance for the device at $V_{GS} = -4 \text{ volts}$. (3)
Q.8	a	. What is an unijunction transistor? Compare it with an ordinary diode & briefly describe its construction. Draw its circuit symbol and equivalent circuit.
	b.	What is an integrated circuit? What are its limitations? (5)
	c.	Define the term 'work-function' of a metal. What is thermionic emission? (2)

Q.9

a. List the characteristics of an ideal and a practical OPAMP.

(6)

b. In the circuit shown in Fig.2, if $v_i = 1V$, calculate I_1, v_0, I_L and I_0 . (4)

c. Draw the circuit of an OPAMP V-to-I converter with grounded load and derive the equation for the current through the load. (6)