SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)

Course & Branch: B.E - EEE

Title of the paper: Electrical Machine Design

Semester: V Max. Marks: 80 Sub.Code: 214505 Time: 3 Hours Date: 30-04-2008 Session: AN

PART - A (10 x 2 = 20) Answer All the Questions

- 1. What is the temperature of class F insulation? Also give example.
- 2. Give the gap contraction factor for ducts.
- 3. What are the disadvantages of larger number of poles in d.c. machines.
- 4. Give the criterion of square pole face in d.c. machines.
- 5. Give the output equation of three phase transformers.
- 6. Write the relation between the net iron area and the diameter of circumscribing circle for a cruciform core.
- 7. Give the relation between D and L for best power factor in 3 phase induction motors.
- 8. What is the effect of dispersion coefficient on overload capacity?
- 9. Define run-away speed of synchronous machines.
- 10. What is the typical value of current density in the damper bars?

PART - B (5 x 12 = 60) Answer All the Questions

- 11. (a) A motor with a heating time constant of 120 minutes is rated at 40 HP continuously. What would be its half-tour rating for the same temperature rise if it starts from room temperature 30°C everytime. The maximum efficiency occurs at full load.
 - (b) Give the applications of the following duties.
 - (i) Intermittent periodic duty with starting.
 - (ii) Continuous duty with intermittent periodic loading.
 - (iii) Short time duty.

(or)

- 12. (a) Determine the airgap length of a d.c. machine form the following particulars: gross length of core = 0.12m; no. of ducts = 1 and is 10 mm wide; slot pitch = 25 mm; slot width = 10 mm; Carter's coefficient for slots and ducts = 0.32; gap density at pole centre is 0.7 wb/m². Field mmf/pole = 3900 A and mmf required for iron parts of magnetic circuit = 800 A.
 - (b) Comment on the choice of specific loadings.
- 13. Discuss the choice of specific loadings.

(or)

14. Obtain suitable dimensions for the commutator and brushes of a 1000 kW, 500 V, 250 rpm, d.c. generator having the following data: Outside diameter of armature = 170 cm.

No of poles = 12

No. of armature coils = 540

Co-efficient of friction = 0.2

Brush pressure = 1200 kg/m^2

Brush drop = 2v

Also find the temperature rise for the given parameters.

- 15. (a) Determine the dimensions for core and yoke for a 5 kVA, 50 Hz, single phase core type transformer. A rectangular core is used with long side twice as long as short side. The window height is 3 times the width. Voltage per turn is 1.8 V; space factor is 0.2. Current density is 1.8 A/mm²; flux density is 1 wb/m².
 - (b) Briefly discuss about the thermal rating of transformers.

(or)

16. A 1000 kVA, 6600/440V, 50 Hz, 3 phase delta/star, core types oil immersed natural cooled transformer. The design data of the transformer is Distance between centres of adjacent limb =0.47 m Outer dia of hV winding = 0.44m

Height of frame = 1.24m

Core loss = 3.7kW

 I^2R loss = 10.5 kW

Design a suitable tank for the transformer. The average temperature rise of oil should not exceed 35°C. The specific heat dissipation from the tank walls is 6 W/m² - C° and 6.5 W/m² - °C due to radiation and convection is improved by 40% due to convection with the provision of tubes.

17. How is the performance of 3 phase induction motor determined using circle diagram?

(or)

- 18. Calculate
 - i) Rotorbar current and cross sectional area of bar.
 - ii) Conductor losses in bar
 - iii) End ring current and its area
 - iv) Full load slip and speed of 3 phase, 15 kW, 50 Hz, 440 V squirrel cage induction motor.

Given:

Stator bore diameter = 30 cm

Axial length of stator core = 12 cm.

No. of poles = 8

No. of stator slots = 48

No. of rotor slots = stator slots + (no. of poles/2)

No. of conductors/stator slots = 24

Current in each rotor conductor at full load = 18.5A

Full load power factor = 0.88 lagging

Resistivity of conductors in rotor bars and rings = 2×10^{-6} ohm-cm.

Assume 4 cm for projection of bar beyond core. The rotor mmf may be taken 85% of stator mmf. Current density of bar conductors and end rings = 7 A/mm^2 . end ring diameter may be taken as 2 cm less than stator bore diameter.

19. Calculate the diameter, core length, no. of conductors of the stator, size of the conductor, no. of stator slots of a 30 MVA, 11 KV, 3000 rpm, 50 Hz star connected turbo alternator. Assume the following data: $B_{avg} = 0.55 \text{ wb/m}^2$, ac = 55000 A/m, $K_w = 0.955$ and peripheral velocity = 160 m/sec.

(or)

20. A 1250 kVA, 3 phase, 6600 V, salient pole alternator als the following data:

Airgap diameter = 1.6m; length of core = 0.45m; no. of poles = 20: armature conductors per meter = 28000; ratio of pole arc to pole pitch = 0.68; stator slot pitch = 28mm; current density in damper bars = 3 A/mm^2 . Design a suitable damper winding for the machine.