[This question paper contains 5 printed pages] Your Roll No 7229 J #### M.Sc./I ## OPERATIONAL RESEARCH # Course I (Basic Mathematics) (Admissions of 2001 and onwards) Time . 3 Hours Maxi Maxımum Marks 75 (Write your Roll No on the top immediately on receipt of this question paper) Attempt Five questions in all, selecting two questions from each of sections A and C and one question from section B. ## SECTION A 1. (a) Construct the central difference table for the data Hence approximate f(0.7) using Bessel's interpolating polynomial (b) If $f(x) = 1/x^2$, find the divided difference $f[x_1, x_2, x_3, x_4]$ 5 2. (a) Approximate the value of the integral $$\int_{-3}^3 x^4 dx$$ Using Weddle's rule, by taking seven equidistant ordinates Compare it with exact value 7 - (b) Find an approximation lying in [2, 3] to $\sqrt[3]{25}$ accurate to 10^{-1} using bisection method 8 - 3 (a) Solve the differential equation $$\frac{dy}{dx} = (x+y)^{-1}, \quad y(0) = 1$$ for x = 5 (5) 1 by Runge-Kutta method of 4th order (b) Use the Gauss-Jacobn method to solve the following linear system of equations Taking initial approximation $x_1^0 = 0$, $x_2^0 = 0$, $x_3^0 = 0$, perform three iterations $$4x_1 + x_2 + 2x_3 = 4$$ $$3x_1 + 5x_2 + x_3 = 7$$ $$x_1 + x_2 + 3x_4 = 3$$ ## SECTION B | 4 | Let B = $(b_1, b_2,$ | $, b_n)$ b | e an | n × | n non-sı | ngı | ılar | matrıx | |---|-----------------------|------------|------|-----|----------|-----|------|--------| | | Describe the meth | od to | find | the | inverse | of | the | matrix | | | B in the product form | | | | | | | 15 | - 5 (a) Define a convex set Prove that the set of all convex combinations of a finite number of points x_1, \ldots, x_n is a convex set - (b) Define a convex cone Prove that the cone generated by a convex set is a convex cone 3 - (c) If ω is a boundary point of a closed convex set, then there is at least one supporting hyperplane at ω ## SECTION C 6 (a) Define a function of bounded variation Show that the function f [0, 2] → IR defined by f(x) = [x], the greatest integer not greater than x, is a function of bounded variation on [0, 2] 5 (b) Prove that a function f is of bounded variation over [a, b] if and only if it can be expressed as the difference of two monotonically increasing functions 5 (c) Show that the sequence $\{f_n\}$ where $f_{r}(x) = x^{n}$ (4) 7229 is uniformly convergent in [0, K], where K is a number less than 1 and only pointwise convergent in [0, 1] 5 7 (a) Define the Laplace transform of a function f show that $$L\left(\int_{t}^{\infty} \frac{e^{-4}}{u} du\right) = \frac{\log(s+1)}{s}$$ (b) Prove that if L^{-1} (F(s)) = f(t), then (i) $$L^{-1}(F(\alpha s)) = \frac{1}{a}f(\frac{t}{a})$$ and (u) $$L^{-1}\left(e^{-as}\mathbf{F}(s)\right) = \begin{cases} f(t-a) & , & t>a \\ 0 & , & t$$ Also evaluate the inverse Laplace transform of $$\frac{1}{(s-a)(s-b)}$$ 8 (a) Solve the following integral equation by stating the conditions under which solution exists $$u(x) = e^{x} - \frac{e}{2} + \frac{1}{2} + \frac{1}{2} \int_{0}^{1} u(t) dt$$ 7 (b) Define a metric space Prove that any union of open sets in a metric space is open and any finite intersection of open sets in a metric space is open 8