Total No. of Questions-12]

[Total No. of Printed Pages-4+2

[3862]-134

S.E. (Production) (First Semester) EXAMINATION, 2010

(Common to Prod./SW)

MATERIAL SCIENCE

(2008 COURSE)

Time : Four Hours

Maximum Marks : 100

- N.B. :- (i) Attempt Q. No. 1 or 2, Q. No. 3 or 4, Q. No. 5 or
 6 from Section I and Q. No. 7 or 8, Q. No. 9 or 10,
 Q. No. 11 or 12 from Section II
 - (*ii*) Answers to the two Sections should be written in separate answer-books.
 - (*iii*) Neat diagrams must be drawn wherever necessary.
 - (iv) Figures to the right indicate full marks.
 - (v) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
 - (vi) Assume suitable data, if necessary.

SECTION I

 (a) What is cast iron ? What are different types of C.I. ? Explain with one application each.

P.T.O.

- (b) What is work Hardening ? Explain its effect on Mechanical Properties of metal with proper graph. [6]
- (c) Draw the following planes on cubic : [6]
 - (i) $(1 \ 1 \ 1)$
 - (ii) (2 2 2)
 - (*iii*) (1 1 0).

Or

2.	<i>(a)</i>	Explain classification of steels based on % carbon and give			
		typical use of each of them with mech. properties.	[6]		
	(<i>b</i>)	Explain Edge and Screw dislocation.	[6]		
	(<i>c</i>)	Define :	[2]		
		(i) Unit cell			
		(<i>ii</i>) Co-ordination no.			
	(d)	Explain point imperfections in detail.	[4]		
3.	(<i>a</i>)	Differentiate between Izod and Charpy.	[16]		
	(<i>b</i>)	Explain Radiography.			
	(<i>c</i>)	What is fatigue ? What factors improve fatigue strengt	h?		
	(d)	Show self-explanatory diagram :			
		(i) Stress-strain diagram for MS			
		(<i>ii</i>) S-N. diagram for steel.			
[3862]	-134	2			

- 4. (a) Draw self explanatory diagram for Erichsen cupping and cone test and explain. [16]
 - (b) Differentiate between Vickers and Brinell Hardness Tester.
 - (c) Write a short note on ultrasonic testing.
 - (d) Explain and give reason.
 - (i) Magnetic particle test is used to detect defects in plastic component.
 - (*ii*) Hardness of rubber blade is checked on Brinell hardness tester.
 - (a) Write Hume Rothery Rule for solid-solution formation. [16]
 (b) Draw and explain cooling curve for pure metal.
 - (c) Draw a typical equilibrium diagram for 2 metals, which have100% solubility in each other in liquid as well as solid state.
 - (d) Explain :
 - (*i*) Eutectic transformation
 - (*ii*) Eutectoid transformation.

Or

6. (a) Write a short note on use of eutectic alloys. [4]

3

(b) Define Gibbs phase rule and show its application on cooling curve for eutectic alloys. [4]

```
[3862]-134
```

5.

Or

P.T.O.

(c) Plot an equilibrium dia on given data and show slow cooling of alloy having 15% B from its liquidus temp. till the room temp.

Melting point of A : 961°C Melting point of B : 1083°C Eutectic temp. : 780°C Eutectic composition : 28.1% of B Max. solubility of B in A i.e. in a is 8.8% at Eutectic temp. and A in B is 7.9% at Eutectic temp. [8]

SECTION II

- (a) Explain strengthening by martensitic transformation.
 - (b) Explain principle, operation of resistance pyrometer.
 - (c) Draw disappearing filament pyrometer.
 - (d) How composite materials are useful for strengthening ? Explain.

Or

- 8. Write short notes on :
 - (a) Total radiation pyrometer
 - (b) Solid-solution hardening
 - (c) Precipitation hardening
 - (*d*) Thermocouple.

[3862]-134

7.

[16]

[16]

- 9. (a) What is corrosion ? How is corrosion prevented in material selection processes ? Explain. [8]
 - (b) Explain electrodeposition in detail. [6]
 - (c) How is humidity responsible in increasing corrosion rate ?

Or

10.	(<i>a</i>)	Explain ion implantation.	[4]
	(<i>b</i>)	How is design of component responsible to change corros	sion
		of metal ? Explain with example.	[6]
	(c)	What is Anodic coating ?	[2]
	(d)	Explain PVD process.	[4]
11.	(<i>a</i>)	Explain mechanical processes for powder manufacturing.	[6]
	(<i>b</i>)	What are different advantages of Powder Metallurgy ?	[6]
	(<i>c</i>)	Define the following :	[6]

- (i) Apparent Density
- (ii) Tap Density
- (*iii*) Compressibility.

12. (a) Write short notes on :

- (i) Diamond impregnated tool
- (ii) Electrical contact material
- (iii) Carbide tool.
- (b) What are physical methods of powder manufacturing. [4]
- (c) Is it possible to manufacture a component having wt. of 10 kgby powder metallurgy ? Explain. [2]

[12]