FOURTH SEMESTER EXAMINATION -2005 BASIC ELECTRONICS

Answer question no. 1 which is compulsory and any five from rest

1. Answer the following.
2×10
a. If the depletion width of a p-n junction with doping levels of $N_{A}=10^{16} / \mathrm{cm}^{3}$ and N_{D} $=10^{18} / \mathrm{cm}^{3}$ is x_{d}, what distance does the depletion region penetrate into n -side of the jnction?
b. What is the value of the current I in the following circuit assuming $\mathrm{V}_{\mathrm{z}}=5.6 \mathrm{~V}$ and $V_{D}=0.7 \mathrm{~V}$.

c. If $292_{10}=1204_{b}$, determine the value of b.
d. Convert the decimal number 359 to its octal equvalent .
e. Find the node voltage V_{2} and I_{c} for the following circuit. Take β to be very high.

f. An enhancement type NMOs transistor with $\mathrm{V}_{1}=2 \mathrm{~V}$ has its source terminal grounded and its gate is given given 3 V . In what region of operation the device operates for $\mathrm{V}_{\mathrm{D}}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V}$?
g. Draw and scale the output waveform of the following circuit if a sinewave of 10 V $\mathrm{p}-\mathrm{p}$ is applied to the following circuit.

h. A 10 V forward voltage is applied to a silicon diode in series with a load of $10 \mathrm{~K} \Omega$. Draw the dc load line and find its slope.
i. If each inverter in the following figure hs a propagation delay of 10 ns , determine the waveshape of the output waveform V_{0}. What is its frequency?

j. Apply DeMorgan's law to the following expression :

$\overline{A \bar{B}}(C+\bar{D})$

2. A germanium diode displays a forward voltage of 0.25 V at 10 mA current at room temperature $\left(300^{\circ} \mathrm{K}\right)$ Estimate the reverse saturation current $\left(\mathrm{I}_{\mathrm{s}}\right)$ assuming unity ideality factor. Calculate the bias voltage needed for diode currents of 1 mA and 100 mA . Also estimate the valves of I_{s} and diode forward current at 0.25 V at $30^{\circ} \mathrm{C}$ above room temperature.
3. A bridge rectifier uses a diode with forward resistance of 5Ω and secondary voltage is 30 V (rms). Determine the dc output voltage for $\mathrm{I}_{\mathrm{dc}}=200 \mathrm{~mA}$ and the rms value of the output ripple voltage.
4. For both the circuit shown below calculate $\mathrm{I}_{\mathrm{B}}, \mathrm{I}_{\mathrm{c}}$ and V_{CE}. Take $\mathrm{V}_{\mathrm{cc}}=22 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=5 \mathrm{~V}$, $R_{B}=86 \mathrm{~K}, \mathrm{R}_{\mathrm{c}}=1 \mathrm{~K}, \mathrm{R}_{\mathrm{E}}=1 \mathrm{~K}, \mathrm{R}_{\mathrm{F}}=80 \mathrm{~K}, \mathrm{~V}_{\mathrm{BE}}=0.7 \mathrm{~V}$ and $\beta=120$.
a.

b.

5. Derive the transfer caracterstics in terms of $R, I_{s}\left(I_{s}\right.$ being the reverse saturation current of the transistor) and V_{T}. Assume $\mathrm{n}=1$.

6. a. Bring out the essential difference between an analog communication system and a digital communication system.
b. What type of time base is used ina CRO ? Explain with a neat sketch.. 5
--X--
