FOURTH SEMESTER EXAMINATION -2005 BASIC ELECTRONICS

Answer question no. 1 which is compulsory and any five from rest

1. Answer the following.

2x10

- a. If the depletion width of a p-n junction with doping levels of $N_A = 10^{16} \, / \text{cm}^3$ and $N_D = 10^{18} \, / \text{cm}^3$ is x_d , what distance does the depletion region penetrate into n-side of the jnction?
- b. What is the value of the current I in the following circuit assuming V_z =5.6V and V_D =0.7V.

- c. If $292_{10} = 1204_b$, determine the value of b.
- d. Convert the decimal number 359 to its octal equvalent .
- e. Find the node voltage V_2 and I_c for the following circuit. Take β to be very high.

f. An enhancement type NMOs transistor with V_1 =2V has its source terminal grounded and its gate is given given 3V . In what region of operation the device operates for V_D =5V and V_D =1V ?

g. Draw and scale the output waveform of the following circuit if a sinewave of 10V p-p is applied to the following circuit.

- h. A 10V forward voltage is applied to a silicon diode in series with a load of $10K\Omega$. Draw the dc load line and find its slope.
- i. If each inverter in the following figure hs a propagation delay of 10ns, determine the waveshape of the output waveform V_o. What is its frequency?

j. Apply DeMorgan's law to the following expression:

$$A\overline{B}(C+\overline{D})$$

- 2. A germanium diode displays a forward voltage of 0.25V at 10mA current at room temperature (300°K) Estimate the reverse saturation current(I_s) assuming unity ideality factor. Calculate the bias voltage needed for diode currents of 1mA and 100mA. Also estimate the valves of I_s and diode forward current at 0.25V at 30°C above room temperature.
- A bridge rectifier uses a diode with forward resistance of 5Ω and secondary 3. voltage is 30V(rms). Determine the dc output voltage for I_{dc} =200mA and the rms value of the output ripple voltage.
- For both the circuit shown below calculate I_B , I_c and V_{CE} . Take V_{cc} =22V, V_{BB} =5V, $R_B=86K$, $R_c=1K$, $R_E=1K$, $R_F=80K$, $V_{BE}=0.7V$ and $\beta=120$. a.

b.

Derive the transfer caracterstics in terms of R, I_s (I_s being the reverse saturation current of the transistor) and V_T . Assume n=1.

- 7. a. Bring out the essential difference between an analog communication system and a digital communication system. 5
 - 5 b. What type of time base is used ina CRO? Explain with a neat sketch...

