L 1069

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2006.

Second Semester

Electronics and Communication Engineering

EC 1151 — CIRCUIT ANALYSIS

(Common to Part-Time B.E.- First Semester – Electronics and Communication Engineering – Regulations 2005)

(Regulations 2004)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A \rightarrow (10 \times 2 = 20 marks)

- 1. Obtain the alternating current that results when an alternating voltage $v = V_m \sin wt$ is applied to a pure capacitor.
- 2. In the circuit shown in Figure 1, find the value of C which gives an equivalent capacitance of 0.5μ F between A and B.

Figure 1

- 3. State Norton's theorem.
- 4. What are the limitations of Thevenin's theorem?
- 5. The current passing through an RLC series circuit is given by $i = I_m \sin wt$. What is the voltage across L and C?
- 6. Assume a sinusoidal voltage, $v = V_m \sin wt$ is applied to a passive network. What is the average value of power if (a) network contains only inductive element (b) network contains only resistive element.

upload your college symposium/conference details,photo(s),video(s) in www.technicalsymposium.com

upload your college symposium/conference details,photo(s),video(s) in www.technicalsymposium.com

- 7. Obtain the natural frequency and time constant of an RLC series circuit with $R = 1 \, \text{K} \, \Omega$, $L = 100 \, \text{mH}$, and $C = 0.1 \, \mu \, \text{F}$.
- 8. An inductive coil having a resistance of $20\,\Omega$ and an inductance of $0.02\,\mathrm{H}$ is connected in series with $0.01\,\mu\mathrm{F}$ capacitor. Calculate:
 - (a) Q of the coil, and
 - (b) Resonant frequency of the circuit.
- 9. Two coupled coils with $L_1=0.02\,H$, $L_2=0.01\,H$ and K=0.5 are connected in series aiding arrangement. Obtain the equivalent inductance in such case.
- Obtain the dual circuit of Figure 2.

Figure 2

PART B
$$(5 \times 16 = 80 \text{ marks})$$

11. (i) For the circuit shown in Figure 3, find the current through the $30\,\Omega$ load resistor using Norton's theorem.

Figure 3

(ii) For the circuit shown in Figure 4, determine the current I, using star-delta conversion.

Figure 4

2

L 1069

V

upload your college symposium/conference details,photo(s),video(s) in www.technicalsymposium.com

upload your college symposium/conference details,photo(s),video(s) in www.technicalsymposium.com

- 12. (a) (i) In a circuit, the impedances, $z_1=(5+j5)\Omega$, $z_2=-j8\Omega$, and $z_3=4\Omega$, are connected in series to an unknown voltage source V. Find the current flowing in the circuit, and the voltage V, if the voltage drop across z_3 is $63.2 \left| 18.45^{\circ} \text{ V} \right|$.
 - (ii) For the circuit shown in Figure 5, find the current through the $10\,\Omega$ resistor.

Figure 5

Or

(b) (i) Calculate the power dissipated by the $5\,\Omega$ resistor in the circuit shown in Figure 6 using node voltage method.

Figure 6

(ii) Find the current in the 12Ω resistor of the network shown in Figure 7, using loop analysis.

Figure 7

3

L 1069

upload your college symposium/conference details,photo(s),video(s) in www.technicalsymposium.com

upload your college symposium/conference details,photo(s),video(s) in www.technicalsymposium.com

13. (a) (i) Find the steady state response of the circuit shown in Figure 8. using the method of phasors. The applied voltage is $v_1 = \cos wt$. Also draw the phasor diagram showing all phasors.

Figure 8

(ii) Find Z_{eq} and Y_{eq} of the circuit shown in Figure 9.

Figure 9

Or

- (b) (i) A current of 10 A flows in a circuit with a 30° angle of lag, when the applied voltage is 100 V. Find the resistance, impedance and reactance of the circuit.
 - (ii) An alternating voltage of 100 V, 50 Hz, is applied across a series combination of $R=50\,\Omega$ and $C=500\,\mu\,F$. Find the current, power and the power factor. Draw the phasor diagram.
- 14. (a) (i) A RC series circuit shown in Figure 10 is energised by a step voltage Eu(t). Assume the circuit is relaxed at t=0, the time of closing of the switch. Obtain the expression for the current, i(t).

Figure 10

L 1069

upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com

(ii) In the circuit shown in Figure 11, the switch K is changed from position 1 to 2 at t=0. Steady state having been reached before switching. Evaluate: (1) $\frac{di}{dt}$ and (2) $\frac{d^2i}{dt^2}$ at $t=0^+$.

Figure 11

Or

(b) For the circuit shown in Figure 12, determine the value of C at which it resonates when f = 100 Hz.

Figure 12

- 15. (a) (i) In a coupled circuit, $L_2 = 4L_1$, and coupling coefficient K = 0.6. When L_1 and L_2 are connected in series opposing, the equivalent inductance is 44.2 mH. Find L_1 , L_2 and M.
 - (ii) For the circuit shown in Figure 13, draw the oriented graph, select a tree, and draw the tie-set schedule.

Figure 13

Or

L 1069

upload your college symposium/conference
details,function photos,videos in
www.technicalsymposium.com

upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com

- (b) (i) A parallel circuit resonates at 1 MHz, having inductance of 150 μ H with Q_0 of 60. Find the value of capacitance and resistance of inductor.
 - (ii) Draw the graph of the network shown in Figure 14. Select a possible tree of the network graph and draw the cut-set schedule.

Figure 14

upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com