## B. Tech Degree III Semester Examination, November 2008

## SE 304 CHEMICAL ENGINEERING I

(Common for 1999&2002 Schemes)

| Time: 3 Hours |            | Ma                                                                                                                                                                 |                                                                                                   |      |                         | ximum Marks: 100        |  |
|---------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------|-------------------------|-------------------------|--|
| I.            | (a)<br>(b) | State the first law of thermodynamics. Give its limitations. Explain Carnot's principle.                                                                           |                                                                                                   |      |                         |                         |  |
|               | (c)        | A steam engine operates between 400 and 300 K under high pressure. What is the minimum amount of heat that must be withdrawn from the hot reservoir to obtain 1000 |                                                                                                   |      |                         |                         |  |
|               |            | joules of work?                                                                                                                                                    | OR                                                                                                |      |                         | (5)                     |  |
| II.           | (a)        | Derive the follo                                                                                                                                                   |                                                                                                   |      |                         |                         |  |
|               | (=)        |                                                                                                                                                                    | $\left(\frac{\partial T}{\partial V}\right)_{s} = \left(\frac{\partial P}{\partial S}\right)_{v}$ |      |                         |                         |  |
|               |            | ·                                                                                                                                                                  | $\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V$     | ,    |                         | (12)                    |  |
|               | (b)        | Show that for an ideal gas Joule Thomson coefficient is zero.                                                                                                      |                                                                                                   |      |                         |                         |  |
| III.          | (a)        | Give the classification of chemical reactors.                                                                                                                      |                                                                                                   |      |                         |                         |  |
|               | (b)        | Give the classification of chemical reactors. ( Distinguish between elementary and non elementary reactions.                                                       |                                                                                                   |      |                         |                         |  |
|               | (c)        | Calculate the entropy change for a thousand fold expansion of a mole of ideal gas, isothermally at 300 K.                                                          |                                                                                                   |      |                         |                         |  |
| 73.1          | (-)        | OR Explain the effect of temperature on equilibrium constant.                                                                                                      |                                                                                                   |      |                         |                         |  |
| IV.           | (a)        | Explain the effect of temperature on equilibrium constant.  Define order and molecularity of chemical reactions.                                                   |                                                                                                   |      |                         |                         |  |
|               | (b)<br>(c) | How is the equilibrium constant related to the standard free energy change?                                                                                        |                                                                                                   |      |                         |                         |  |
|               | (4)        | Define order and molecularity of chemical reactions.  How is the equilibrium constant related to the standard free energy change?                                  |                                                                                                   |      |                         |                         |  |
| V.            | (a)        | Briefly explain the dynamic characteristics of an instrument.                                                                                                      |                                                                                                   |      |                         |                         |  |
|               | (b)        | Highlight the advantages and limitations of sight glass method.                                                                                                    |                                                                                                   |      |                         |                         |  |
|               | (c)        | With a neat sketch, explain the working principle of venturimeter.  OR                                                                                             |                                                                                                   |      |                         |                         |  |
| VI.           | (a)        | Explain the working of optical pyrometer.                                                                                                                          |                                                                                                   |      |                         |                         |  |
|               | (b)        | Describe the working of McLeod vacuum gauge with a neat sketch.                                                                                                    |                                                                                                   |      |                         |                         |  |
|               | (c)        | Explain the working of optical pyrometer.  Describe the working of McLeod vacuum gauge with a neat sketch.  State Seebeck effect and Petlier effect.               |                                                                                                   |      |                         |                         |  |
| VII.          |            | Write notes on                                                                                                                                                     |                                                                                                   |      |                         |                         |  |
|               |            | (i)                                                                                                                                                                | Strain gauges                                                                                     | (ii) | Load cells              |                         |  |
|               |            | (iii)                                                                                                                                                              | Final control elements                                                                            | (iv) | Transducers.            | $(4 \times 5 = 20)$     |  |
| VIII.         |            | Develois the section                                                                                                                                               | OR                                                                                                |      | •                       | (20)                    |  |
| V 111.        |            | Explain the vari                                                                                                                                                   | ious types of controllers.                                                                        |      |                         | (20)                    |  |
| IX.           | (a)<br>(b) | Briefly explain the principle and working of nuclear magnetic resonance spectroscopy. (10) With a neat diagram explain the working of a mass spectrometer. (10)    |                                                                                                   |      |                         |                         |  |
| X.            |            | Write short notes on:                                                                                                                                              |                                                                                                   |      |                         |                         |  |
|               |            | (i)                                                                                                                                                                | X-ray diffraction                                                                                 | (ii) | Structure of ceramics   |                         |  |
|               |            | (iii)                                                                                                                                                              | Addition polymerization                                                                           | (iv) | Vibrational spectroscop | py. $(4 \times 5 = 20)$ |  |
|               |            |                                                                                                                                                                    |                                                                                                   |      |                         |                         |  |



