B. Tech Degree III Semester Examination, November 2009

SE 304 CHEMICAL ENGINEERING I

(Common for 1999 & 2002 Schemes)

Time: 3 Hours		Maximum	Marks: 100
I. •	(a)	Prove that $C_p = \left(\frac{\partial H}{\partial T}\right)_p$.	(5)
	(b)	The contents in a stirred tank reactor are being agitated by means of a 2 hp stirre. The heat generated due to stirring is dissipated to the surroundings at a rate of 3000 KJ/h. Determine the change in internal energy.	
		OR	()
II.	(a)	Explain Carnot refrigeration cycle.	(10)
	(b)	Define Joule – Thomson expansion and show that Joule – Thomson coefficient	(10)
		for an ideal gas is zero.	(10)
III.	(a)	State Le-Chatlier's principle.	(2)
•	(b)	How is equilibrium constant related to standard free energy charge?	(6)
	(c)	What are the different types of reactors? Explain any one.	(12)
117	(-)	OR What are alamentary and non-alamentary reactions with suitable avamples?	(5)
IV.	(a) (b)	What are elementary and non-elementary reactions with suitable examples? Explain free energy change and entropy change.	(5) (5)
	(c)	What is the effect of temperature on reaction rate? What are the factors	(5)
	(4)	affecting rate of a chemical reaction.	(10)
¥ F :	(-)	Totals do not discontinue to the College All and Manner	(5)
V.	(a)	Explain the working principle of a Mc-Leod Vacuum gauge.	(5)
	(b) (c)	What are the different types of flow measuring instruments? With a neat sketch explain the working of a rotameter.	(8) (7)
	(0)	OR	(7)
VI.	(a)	Explain static and dynamic characteristics of an instrument.	(5)
	(b)	Explain any one instrument that can be used for high temperature measurement.	
	(c)	What is the principle used in thermo couples?	(5)
VII.		Describe various types of feed back controllers.	(20)
		OR	, ,
VIII.		Write short notes on :-	
		(i) Strain gauge (ii) Load cells	(00)
		(iii) Final Control Element (iv) Transducer	(20)
IX.	(a)	What is the principle of mass spectrometry? Explain with a neat diagram the	
	` '	working of a mass spectrometer.	(10)
	(b)	Briefly explain -	
		(i) Vibrational Spectroscopy	4.0
		(ii) NMR Spectroscopy OR	(10)
X.		Write short notes on :	
72.		(i) Polymerisation	
		(ii) Structure of ceramics	
		(iii) ·X-ray diffraction -	
		(iv) Alloys.	$(4 \times 5 = 20)$
		NEERING L	

