MATHEMATICS

- 1. $\int_{0}^{10} |x \times (x-1)(x-2)| dx$
- (b) 1600.5
- (c) 16.005
- (d) none of these

Sol: Ans [b]

- The value of $\lim_{x\to 0} \frac{1+\sin x \cos x + \log(1-x)}{x^3}$ is
 - (a) -1
- (b) 1/2
- (c) -1/2
- (d) 1

Sol: Ans [c]

- The equation of tangent to the curve $\frac{x^2}{3} \frac{y^2}{2} = 1$ which is parallel to y = x is 3.
 - (a) $y = x \pm 1$
- (b) y = x 1/2 (c) y = x + 1/2 (d) y = 1 x

Sol: Ans [a]

- **4.** If $A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$ then A^{-1} is
 - (a) $\begin{bmatrix} 1/a & 0 & 0 \\ 0 & 1/b & 0 \\ 0 & 0 & 1/c \end{bmatrix}$

(b) $\begin{bmatrix} -1/a & 0 & 0 \\ 0 & -1/b & 0 \\ 0 & 0 & 1/c \end{bmatrix}$

(c) $\begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 1/c \end{bmatrix}$

(d) none of these

Sol: Ans [a]

- 5. If $\left| \frac{z+i}{z-i} \right| = 3$ then radius of the circle is
 - (a) $\frac{2}{\sqrt{21}}$ (b) $\frac{1}{\sqrt{21}}$
- (c) $\frac{\sqrt{21}}{2}$
 - (d) $\sqrt{21}$

Sol: Ans [c]

(d) -2

(d) $(0, 2\pi)$

Sol: Ans [a]

Sol: Ans [a]

Sol: Ans [a]

(a) $\sqrt{2}$

(a) $(0, 2 \tan^{-1} 1/4)$

8.	The angle of elevation of top of a tower from a point on the ground is 30° and it is 60° when it is viewed from a point located 40 m away from the initial point towards the tower. The height of the tower is					
	(a) $-20\sqrt{3}$	(b) $\frac{\sqrt{3}}{20}$	(c) $-\frac{\sqrt{3}}{20}$	(d) $20\sqrt{3}$		
Sol:	Ans [d]					
9.	The summation of two unit vectors is a third unit vector, then the modulus of the difference of the unit vectors is					
	(a) $\sqrt{3}$	(b) $1 - \sqrt{3}$	(c) $1 + \sqrt{3}$	(d) $-\sqrt{3}$		
Sol:	Ans [a]					
10.	A body falls freely from a point A and passes through the points $B \& C$. Given that $AB = 2BC$. The ratio of the time taken by the body to cover the distances AB and BC is					
	$(a) \frac{2+\sqrt{6}}{1}$	(b) $\frac{2-\sqrt{6}}{1}$	$(c) \frac{1-\sqrt{6}}{2}$	$(d) \frac{1+\sqrt{6}}{2}$		
Sol:	Ans [a]					
11.	The value of $\sum_{r=0}^{n} r^{n} C_{r} x^{r} y^{n-r}$ where $x + y = 1$ is equal to (a) $1 - nx$ (b) $1 + nx$ (c) $-nx$ (d) nx					
	(a) $1-nx$	(b) $1 + nx$	(c) <i>-nx</i>	(d) <i>nx</i>		
Sol:	Ans [d]					
12.	There is a set of m parallel lines intersecting a set of another n parallel lines in a plane. The number of parallelogrammes formed is					
	(a) $^{m-1}C_2 \cdot ^{n-1}C_2$	(b) ${}^mC_2 \cdot {}^nC_2$	(c) $^{m-1}C_2 \cdot {}^{n}C_2$	(d) ${}^{m}C_{2} \cdot {}^{n-1}C_{2}$		
Sol:	Ans [b]					
13.	If in a trial the probability of success is twice the probability of failure. In six trials the probability of at least four successes is					
	496	400	500	600		

Let $f(x) = \cos x \cos 2x \cos 4x \cos 8x \cos 16x$, then the value of $f'(\pi/4)$ is

(c) 2

(c) $(0, \pi)$

Let $(\sin a)x^2 + (\sin a)x + (1 - \cos a) = 0$. The value of a for which roots of this equation are real

(b) $-\sqrt{2}$

(b) $(0, 2 \pi/3)$

- **14.** A force vector $m\mathbf{i} + n\mathbf{k}$ is applied to a body at a point P(1, 2, 3). If moment of the force is perpendicular to $3\mathbf{i} + 5\mathbf{j} + 6\mathbf{k}$ then relation between m & n is
 - (a) n + 3m = 0
- (b) n + 3m = 1
- (c) n + 3m = 2 (d) n + 3m = 3

Sol: Ans [a]

- **15.** If $S_1 = \Sigma n$, $S_2 = \Sigma n^2$, $S_3 = \Sigma n^3$ then the value of $\lim_{n \to \infty} \frac{S_1 \left(1 + \frac{S_3}{8}\right)}{S_2^2}$ is equal to
 - (a) 3/32
- (b) 3/64
- (c) 9/32
- (d) 9/64

Sol: Ans [d]

- **16.** The greatest term in the expansion of $(1 + 3x)^{54}$ where x = 1/3 is
 - (a) T₂₈
- (b) T₂₅
- (c) T_{26}
- (d) T_{24}

Sol: Ans [a]

- The value of $\lim_{x \to 0} \frac{(4^x 1)^3}{\sin \frac{x^2}{4} \log(1 + 3x)}$ is
 - (a) $\frac{4}{3}(\ln 4)^2$ (b) $\frac{4}{3}(\ln 4)^3$ (c) $\frac{3}{2}(\ln 4)^2$ (d) $\frac{3}{2}(\ln 4)^3$

Sol: Ans [b]

- **18.** $\int_{0}^{3} |x^{3} + x^{2} + 3x| dx \text{ is equal to}$

 - (a) $\frac{171}{2}$ (b) $\frac{171}{4}$ (c) $\frac{170}{4}$

Sol: Ans [b]

- 19. The equation of family of a curve is $y^2 = 4a(x + a)$ then differential equation of the family is
 - (a) y = y' + x
- (b) y = y'' + x (c) $y = 2y'x + y^2y'^2$ (d) $y'' + y' + y^2 = 0$

Sol: Ans [c]

- 20. If A.M. of two numbers is twice of their G.M. then the ratio of greatest number to smallest number
 - (a) $7 4\sqrt{3}$
- (b) $7 + 4\sqrt{3}$ (c) 21
- (d) 5

Sol: Ans [b]

21. Let $A = \begin{bmatrix} 1 & 2 \\ -5 & 1 \end{bmatrix}$ and $A^{-1} = xA + yI$, then the value of x and y are

(a) x = -1, y = 2 (b) x = -1, y = -2 (c) x = 1, y = 2 (d) x = 1, y = -2

Sol: Ans [a]

22. Let $x^2 + y^2 - 2x - 6y + 6 = 0$ and $x^2 + y^2 - 6x - 4y + 12 = 0$ are two circles, then equation of the circle having diamter as their common chord is

(a) $5x^2 + 5y^2 + 26x - 22y + 54 = 0$

(b) $5x^2 + 5y^2 + 26x + 22y + 54 = 0$

(c) $5x^2 + 5y^2 - 26x - 22y + 54 = 0$ (d) $5x^2 + 5y^2 - 26x - 22y - 54 = 0$

Sol: Ans [c]

23. A plane $x + y + z = -a\sqrt{3}$ touches the sphere $2x^2 + 2y^2 + 2z^2 - 2x + 4y - 4z + 3 = 0$ then the value of a is

(a) $\pm \frac{1}{\sqrt{2}}$

(b) $\frac{1}{2\sqrt{3}}$ (c) $1 - \frac{1}{\sqrt{3}}$ (d) $1 + \frac{1}{\sqrt{3}}$

Sol: Ans [a]

24. For what value of a, $f(x) = -x^3 + 4ax^2 + 2x - 5$ is decreasing $\forall x$.

(a) (1, 2)

(b) (3, 4)

(c) R

(d) no value of a

Sol: Ans [d]

25. The common tangent of the parabolas $y^2 = 4x$ and $x^2 = -8y$ is

(a) y = x + 2

(b) y = x - 2 (c) y = 2x + 3

(d) none of these

Sol: Ans [d]

The solution of the differential equation $\frac{dy}{dx} + \frac{2x}{1+x^2}y = \frac{1}{(1+x^2)^2}$ is

(a) $v(1-x^2) = \tan^{-1}x + c$

(b) $v(1+x^2) = \tan^{-1}x + c$

(c) $y(1+x^2)^2 = \tan^{-1}x + c$

(d) $v(1-x^2)^2 = \tan^{-1}x + c$

Sol: Ans [b]

27. The value of $\sum_{r=0}^{\infty} \frac{{}^{r}C_{3} \cdot 3^{r}}{r!}$ is equal to

(a) $\frac{6e^2}{2}$ (b) $\frac{6e^3}{2}$

(c) $\frac{9e^2}{2}$

(d) $\frac{9e^3}{2}$

Sol: Ans [d]

28. The value of $\int \frac{1}{[(x-1)^3(x+2)^5]^{1/4}} dx$ is

(a)
$$\frac{4}{3} \left(\frac{x-1}{x+2} \right)^{1/4} + C$$
 (b) $\frac{4}{3} \left(\frac{x+1}{x+2} \right)^{1/4} + C$ (c) $\frac{4}{3} \left(\frac{x+1}{x-2} \right)^{1/4} + C$ (d) $\frac{4}{3} \left(\frac{x-1}{x-2} \right)^{1/4} + C$

Sol: Ans [a]

29. Two vertices of a Δ are (5, -3), (-2, 3) and orthocentre is (0, 0) then third vertex is

(a) $\left(\frac{38}{3}, -\frac{133}{9}\right)$ (b) $\left(-\frac{38}{3}, \frac{133}{9}\right)$ (c) $\left(-\frac{38}{3}, -\frac{133}{9}\right)$ (d) none of these

Sol: Ans [c]

30. Let $cos(2 tan^{-1}x) = 1/2$ then the value of x is

(a) $\sqrt{3}$ (b) $\frac{1}{\sqrt{3}}$ (c) $1 - \sqrt{3}$ (d) $1 - \frac{1}{\sqrt{3}}$

Sol: Ans [b]

31. If in a projectile motion range R is maximum then relation between H and R is

(a) H = R/2 (b) H = R/4 (c) H = 2R (d) H = R/8

Sol: Ans [b]

32. The foci of the conic section $25x^2 + 16y^2 - 150x = 175$ are

(a) $(0, \pm 3)$ (b) $(0, \pm 2)$ (c) $(3, \pm 3)$ (d) $(0, \pm 1)$

Sol: Ans [c]

33. A line passes through the point of intersection of the lines 3x + y + 1 = 0 and 2x - y + 3 = 0 and makes equal intercepts with axes. Then equation of the line is

(a) 5x + 5y - 3 = 0 (b) x + 5y - 3 = 0 (c) 5x - y - 3 = 0 (d) 5x + 5y + 3 = 0

Sol: Ans [a]

34. The value of $(A \cup B \cup C) \cap (A \cap B^C \cap C^C)^C \cap C^C$ is

(a) $B \cap C^C$ (b) $B^C \cap C^C$ (c) $B \cap C$ (d) $A \cap B \cap C$

Sol: Ans [a]

જ્ર