1. $\int_{0}^{10}|x \times(x-1)(x-2)| d x$
(a) 160.05
(b) 1600.5
(c) 16.005
(d) none of these

Sol: Ans [b]
2. The value of $\lim _{x \rightarrow 0} \frac{1+\sin x-\cos x+\log (1-x)}{x^{3}}$ is
(a) -1
(b) $1 / 2$
(c) $-1 / 2$
(d) 1

Sol: Ans [c]
3. The equation of tangent to the curve $\frac{x^{2}}{3}-\frac{y^{2}}{2}=1$ which is parallel to $y=x$ is
(a) $y=x \pm 1$
(b) $y=x-1 / 2$
(c) $y=x+1 / 2$
(d) $y=1-x$

Sol: Ans [a]
4. If $A=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]$ then A^{-1} is
(a) $\left[\begin{array}{ccc}1 / a & 0 & 0 \\ 0 & 1 / b & 0 \\ 0 & 0 & 1 / c\end{array}\right]$
(b) $\left[\begin{array}{ccc}-1 / a & 0 & 0 \\ 0 & -1 / b & 0 \\ 0 & 0 & 1 / c\end{array}\right]$
(c) $\left[\begin{array}{ccc}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 1 / c\end{array}\right]$
(d) none of these

Sol: Ans [a]
5. If $\left|\frac{z+i}{z-i}\right|=3$ then radius of the circle is
(a) $\frac{2}{\sqrt{21}}$
(b) $\frac{1}{\sqrt{21}}$
(c) $\frac{\sqrt{21}}{2}$
(d) $\sqrt{21}$

Sol: Ans [c]
6. Let $f(x)=\cos x \cos 2 x \cos 4 x \cos 8 x \cos 16 x$, then the value of $f^{\prime}(\pi / 4)$ is
(a) $\sqrt{2}$
(b) $-\sqrt{2}$
(c) 2
(d) -2

Sol: Ans [a]
7. Let $(\sin a) x^{2}+(\sin a) x+(1-\cos a)=0$. The value of a for which roots of this equation are real and distinct.
(a) $\left(0,2 \tan ^{-1} 1 / 4\right)$
(b) $(0,2 \pi / 3)$
(c) $(0, \pi)$
(d) $(0,2 \pi)$

Sol: Ans [a]

8. The angle of elevation of top of a tower from a point on the ground is 30° and it is 60° when it is viewed from a point located 40 m away from the initial point towards the tower. The height of the tower is
(a) $-20 \sqrt{3}$
(b) $\frac{\sqrt{3}}{20}$
(c) $-\frac{\sqrt{3}}{20}$
(d) $20 \sqrt{3}$

Sol: Ans [d]
9. The summation of two unit vectors is a third unit vector, then the modulus of the difference of the unit vectors is
(a) $\sqrt{3}$
(b) $1-\sqrt{3}$
(c) $1+\sqrt{3}$
(d) $-\sqrt{3}$

Sol: Ans [a]

10. A body falls freely from a point A and passes through the points $B \& C$. Given that $A B=2 B C$. The ratio of the time taken by the body to cover the distances $A B$ and $B C$ is
(a) $\frac{2+\sqrt{6}}{1}$
(b) $\frac{2-\sqrt{6}}{1}$
(c) $\frac{1-\sqrt{6}}{2}$
(d) $\frac{1+\sqrt{6}}{2}$

Sol: Ans [a]

11. The value of $\sum_{r=0}^{n} r^{n} C_{r} x^{r} y^{n-r}$ where $x+y=1$ is equal to
(a) $1-n x$
(b) $1+n x$
(c) $-n x$
(d) $n x$

Sol: Ans [d]
12. There is a set of m parallel lines intersecting a set of another n parallel lines in a plane. The number of parallelogrammes formed is
(a) ${ }^{m-1} C_{2} \cdot{ }^{n-1} C_{2}$
(b) ${ }^{m} C_{2} \cdot{ }^{n} C_{2}$
(c) ${ }^{m-1} C_{2} \cdot{ }^{n} C_{2}$
(d) ${ }^{m} C_{2} \cdot{ }^{n-1} C_{2}$

Sol: Ans [b]

13. If in a trial the probability of success is twice the probability of failure. In six trials the probability of at least four successes is
(a) $\frac{496}{729}$
(b) $\frac{400}{729}$
(c) $\frac{500}{729}$
(d) $\frac{600}{729}$

Sol: Ans [a]

14. A force vector $m \mathbf{i}+n \mathbf{k}$ is applied to a body at a point $P(1,2,3)$. If moment of the force is perpendicular to $3 \mathbf{i}+5 \mathbf{j}+6 \mathbf{k}$ then relation between $m \& n$ is
(a) $n+3 m=0$
(b) $n+3 m=1$
(c) $n+3 m=2$
(d) $n+3 m=3$

Sol: Ans [a]

15. If $S_{1}=\Sigma n, S_{2}=\Sigma n^{2}, S_{3}=\Sigma n^{3}$ then the value of $\lim _{n \rightarrow \infty} \frac{S_{1}\left(1+\frac{S_{3}}{8}\right)}{S_{2}{ }^{2}}$ is equal to
(a) $3 / 32$
(b) $3 / 64$
(c) $9 / 32$
(d) $9 / 64$

Sol: Ans [d]

16. The greatest term in the expansion of $(1+3 x)^{54}$ where $x=1 / 3$ is
(a) T_{28}
(b) T_{25}
(c) T_{26}
(d) T_{24}

Sol: Ans [a]
17. The value of $\lim _{x \rightarrow 0} \frac{\left(4^{x}-1\right)^{3}}{\sin \frac{x^{2}}{4} \log (1+3 x)}$ is
(a) $\frac{4}{3}(\ln 4)^{2}$
(b) $\frac{4}{3}(\ln 4)^{3}$
(c) $\frac{3}{2}(\ln 4)^{2}$
(d) $\frac{3}{2}(\ln 4)^{3}$

Sol: Ans [b]
18. $\int_{0}^{3}\left|x^{3}+x^{2}+3 x\right| d x$ is equal to
(a) $\frac{171}{2}$
(b) $\frac{171}{4}$
(c) $\frac{170}{4}$
(d) $\frac{170}{3}$

Sol: Ans [b]

19. The equation of family of a curve is $y^{2}=4 a(x+a)$ then differential equation of the family is
(a) $y=y^{\prime}+x$
(b) $y=y^{\prime \prime}+x$
(c) $y=2 y^{\prime} x+y^{2} y^{2}$
(d) $y^{\prime \prime}+y^{\prime}+y^{2}=0$

Sol: Ans [c]
20. If A.M. of two numbers is twice of their G.M. then the ratio of greatest number to smallest number is
(a) $7-4 \sqrt{3}$
(b) $7+4 \sqrt{3}$
(c) 21
(d) 5

Sol: Ans [b]

21. Let $A=\left[\begin{array}{cc}1 & 2 \\ -5 & 1\end{array}\right]$ and $A^{-1}=x A+y I$, then the value of x and y are
(a) $x=-1, y=2$
(b) $x=-1, y=-2$
(c) $x=1, y=2$
(d) $x=1, y=-2$

Sol: Ans [a]

22. Let $x^{2}+y^{2}-2 x-6 y+6=0$ and $x^{2}+y^{2}-6 x-4 y+12=0$ are two circles, then equation of the circle having diamter as their common chord is
(a) $5 x^{2}+5 y^{2}+26 x-22 y+54=0$
(b) $5 x^{2}+5 y^{2}+26 x+22 y+54=0$
(c) $5 x^{2}+5 y^{2}-26 x-22 y+54=0$
(d) $5 x^{2}+5 y^{2}-26 x-22 y-54=0$

Sol: Ans [c]
23. A plane $x+y+z=-a \sqrt{3}$ touches the sphere $2 x^{2}+2 y^{2}+2 z^{2}-2 x+4 y-4 z+3=0$ then the value of a is
(a) $\pm \frac{1}{\sqrt{3}}$
(b) $\frac{1}{2 \sqrt{3}}$
(c) $1-\frac{1}{\sqrt{3}}$
(d) $1+\frac{1}{\sqrt{3}}$

Sol: Ans [a]

24. For what value of $a, f(x)=-x^{3}+4 a x^{2}+2 x-5$ is decreasing $\forall x$.
(a) $(1,2)$
(b) $(3,4)$
(c) R
(d) no value of a

Sol: Ans [d]
25. The common tangent of the parabolas $y^{2}=4 x$ and $x^{2}=-8 y$ is
(a) $y=x+2$
(b) $y=x-2$
(c) $y=2 x+3$
(d) none of these

Sol: Ans [d]
26. The solution of the differential equation $\frac{d y}{d x}+\frac{2 x}{1+x^{2}} y=\frac{1}{\left(1+x^{2}\right)^{2}}$ is
(a) $y\left(1-x^{2}\right)=\tan ^{-1} x+c$
(b) $y\left(1+x^{2}\right)=\tan ^{-1} x+c$
(c) $y\left(1+x^{2}\right)^{2}=\tan ^{-1} x+c$
(d) $y\left(1-x^{2}\right)^{2}=\tan ^{-1} x+c$

Sol: Ans [b]

27. The value of $\sum_{r=3}^{\infty} \frac{{ }^{r} C_{3} \cdot 3^{r}}{r!}$ is equal to
(a) $\frac{6 e^{2}}{2}$
(b) $\frac{6 e^{3}}{2}$
(c) $\frac{9 e^{2}}{2}$
(d) $\frac{9 e^{3}}{2}$

Sol: Ans [d]

28. The value of $\int \frac{1}{\left[(x-1)^{3}(x+2)^{5}\right]^{1 / 4}} d x$ is
(a) $\frac{4}{3}\left(\frac{x-1}{x+2}\right)^{1 / 4}+\mathrm{C}$
(b) $\frac{4}{3}\left(\frac{x+1}{x+2}\right)^{1 / 4}+\mathrm{C}$
(c) $\frac{4}{3}\left(\frac{x+1}{x-2}\right)^{1 / 4}+\mathrm{C}$
(d) $\frac{4}{3}\left(\frac{x-1}{x-2}\right)^{1 / 4}+\mathrm{C}$

Sol: Ans [a]
29. Two vertices of a Δ are $(5,-3),(-2,3)$ and orthocentre is $(0,0)$ then third vertex is
(a) $\left(\frac{38}{3},-\frac{133}{9}\right)$
(b) $\left(-\frac{38}{3}, \frac{133}{9}\right)$
(c) $\left(-\frac{38}{3},-\frac{133}{9}\right)$
(d) none of these

Sol: Ans [c]

30. Let $\cos \left(2 \tan ^{-1} x\right)=1 / 2$ then the value of x is
(a) $\sqrt{3}$
(b) $\frac{1}{\sqrt{3}}$
(c) $1-\sqrt{3}$
(d) $1-\frac{1}{\sqrt{3}}$

Sol: Ans [b]

31. If in a projectile motion range R is maximum then relation between H and R is
(a) $\mathrm{H}=\mathrm{R} / 2$
(b) $\mathrm{H}=\mathrm{R} / 4$
(c) $\mathrm{H}=2 \mathrm{R}$
(d) $\mathrm{H}=\mathrm{R} / 8$

Sol: Ans [b]
32. The foci of the conic section $25 x^{2}+16 y^{2}-150 x=175$ are
(a) $(0, \pm 3)$
(b) $(0, \pm 2)$
(c) $(3, \pm 3)$
(d) $(0, \pm 1)$

Sol: Ans [c]

33. A line passes through the point of intersection of the lines $3 x+y+1=0$ and $2 x-y+3=0$ and makes equal intercepts with axes. Then equation of the line is
(a) $5 x+5 y-3=0$
(b) $x+5 y-3=0$
(c) $5 x-y-3=0$
(d) $5 x+5 y+3=0$

Sol: Ans [a]
34. The value of $(A \cup B \cup C) \cap\left(A \cap B^{C} \cap C^{C}\right)^{C} \cap C^{C}$ is
(a) $B \cap C^{C}$
(b) $B^{C} \cap C^{C}$
(c) $B \cap C$
(d) $A \cap B \cap C$

Sol: Ans [a]

