(3 Hours)

[Total Marks: 100

- N.B.:(1) Attempt any five questions.
 - (2) Assume suitable data if necessary, state it clearly mention the same.
 - (3) All questions carry equal marks.
- 1. (a) Consider a Lograthmic quantizer with 02(two) levels.

 Calculate describing function N(X, W) for this quantizer.

 State the property, if any used.

10

(b) The I/O characteristics of Non-linear device is given by-

10

$$y = x^2 \frac{dx}{dt} + 2x$$

where 'x' is input and 'y' is o/p.

Derive the Describing function of device.

- 2. (a) Derive expression for Liapunov's Second Method and explain how it can be applied 10 to investigate the stability of the system.
 - to investigate the stability of the system. (b) Consider the Non-linear controller described by $\dot{x}_1 = x_2$; $\dot{x}_2 = -x_1^3 - x_2$.

Prove that this system is globally stable in large using a Liapunov function of the form—

$$V(x) = \alpha x_1^4 + \beta x_1^2 + x_1 x_2 + x_2^2$$

What values of ' α ' and ' β ' are appropriate ?

3. (a) Using variable gradient Method find a suitable Liapunov's function for the system given by— 10

$$\dot{x}_1 = x_2^3$$
; $\dot{x}_2 = -x_1^3 - x_2$

(b) Using Krasoviskii's Method Examine the stability of Equillibrium state x = 0 of the 10 following system—

$$\dot{x}_1 = -x_1; \quad \dot{x}_2 = x_1 - x_2 - x_2^3.$$

- 4. (a) Draw phase trajectory using Method of Isocline for the system given by— $\ddot{y} + 2\dot{y} + 5y = z$
 - (b) Using delta Method plot the phase trajectory for system given below-

- 5. (a) Explain in detail the schemes of Adaptive Control.
 - (b) A unity feedback system has Nominal characteristics equation—

$$q(s) = S^3 + 3 S^2 + 3 S + 4 = 0.$$

The co-efficients vary as follows-

$$3 \le a_0 \le 5$$
; $1 \le a_1 \le 3$; $2 \le a_2 \le 3$.

6. (a) Using describing function Analysis show that a stable limit cycles exists for all values of k > 0 find the amplitude and frequency of the limit cycle when K = 4.

(b) The equation of Vander Pol's oscillator is given by---

$$\ddot{y} - \mu \left(1 - y^2\right) \dot{y} + y = 0$$

where μ is constant. Locate and identify the nature of singular points and plot corresponding nature of Trajections for $\mu=0$; $\mu<0$; $\mu=1$.

- 7. Explain in brief any four :-
 - (a) Jump Resonance
 - (b) Limit Cycles
 - (c) Sub-harmonic oscillations
 - (d) Frequency Amplitude Dependence.
 - (e) Structured and unstructured uncertainity.