#1
7th September 2010, 07:51 PM
|
|||
|
|||
Syllabus of life sciences in GATE
Respected Sir,
I have done M.Sc. Microbiology and I want to know the syllabus of life sciences in GATE Exam. I also wanted to know that how many attempts are there to qualify the GATE and what are the minimum marks required for the same. In which bank in Himachal Pradesh GATE forms will be available? Thank You. |
#2
7th September 2010, 10:52 PM
|
|||
|
|||
Re: Syllabus of life sciences in GATE
Syllabus for Life Sciences
Looking for GATE Preparation Material? Join & Get here now! XL-Life Sciences SECTION H. CHEMISTRY (Compulsory) Atomic structure and periodicity: Planck’s quantum theory, wave particle duality, uncertainty principle, quantum mechanical model of hydrogen atom; electronic configuration of atoms; periodic table and periodic properties; ionization energy, election affinity, electronegativity, atomic size. Structure and bonding: Ionic and covalent bonding, M.O. and V.B. approaches for diatomic molecules, VSEPR theory and shape of molecules, hybridisation, resonance, dipole moment, structure parameters such as bond length, bond angle and bond energy, hydrogen bonding, van der Waals interactions. Ionic solids, ionic radii, lattice energy (Born-Haber Cycle). s.p. and d Block Elements: Oxides, halides and hydrides of alkali and alkaline earth metals, B, Al, Si, N, P, and S, general characteristics of 3d elements, coordination complexes: valence bond and crystal field theory, color, geometry and magnetic properties. Chemical Equilibria: Colligative properties of solutions, ionic equilibria in solution, solubility product, common ion effect, hydrolysis of salts, pH, buffer and their applications in chemical analysis, equilibrium constants (Kc, Kp and Kx) for homogeneous reactions, Electrochemistry: Conductance, Kohlrausch law, Half Cell potentials, emf, Nernst equation, galvanic cells, thermodynamic aspects and their applications. Reaction Kinetics: Rate constant, order of reaction, molecularity, activation energy, zero, first and second order kinetics, catalysis and elementary enzyme reactions. Thermodynamics: First law, reversible and irreversible processes, internal energy, enthalpy, Kirchoff’s equation, heat of reaction, Hess law, heat of formation, Second law, entropy, free energy, and work function. Gibbs-Helmholtz equation, Clausius-Clapeyron equation, free energy change and equilibrium constant, Troutons rule, Third law of thermodynamics. Basis of Organic Reactions Mechanism: Elementary treatment of SN1, SN2, E1 and E2 reactions, Hoffmann and Saytzeff rules, Addition reactions, Markonikoff rule and Kharash effect, Diels-Alder reaction, aromatic electrophilic substitution, orientation effect as exemplified by various functional groups. Identification of functional groups by chemical tests Structure-Reactivity Correlations: Acids and bases, electronic and steric effects, optical and geometrical isomerism, tautomerism, conformers, concept of aromaticity SECTION I. BIOCHEMISTRY Organization of life. Importance of water. Cell structure and organelles. Structure and function of biomolecules: Amino acids, Carbohydrates, Lipids, Proteins and Nucleic acids. Biochemical separation techniques and characterization: ion exchange, size exclusion and affinity chromatography, electrophoresis, UV-visible, fluorescence and Mass spectrometry. Protein structure, folding and function: Myoglobin, Hemoglobin, Lysozyme, Ribonuclease A, Carboxypeptidase and Chymotrypsin. Enzyme kinetics including its regulation and inhibition, Vitamins and Coenzymes. Metabolism and bioenergetics. Generation and utilization of ATP. Metabolic pathways and their regulation: glycolysis, TCA cycle, pentose phosphate pathway, oxidative phosphorylation, gluconeogenesis, glycogen and fatty acid metabolism. Metabolism of Nitrogen containing compounds: nitrogen fixation, amino acids and nucleotides. Photosynthesis: the Calvin cycle. Biological membranes. Transport across membranes. Signal transduction; hormones and neurotransmitters. DNA replication, transcription and translation. Biochemical regulation of gene expression. Recombinant DNA technology and applications: PCR, site directed mutagenesis and DNAmicroarray. Immune system. Active and passive immunity. Complement system. Antibody structure, function and diversity. Cells of the immune system: T, B and macrophages. T and B cell activation. Major histocompatibilty complex. T cell receptor. Immunological techniques: Immunodiffusion, immunoelectrophoresis, RIA and ELISA. SECTION J. BIOTECHNOLOGY Advanced techniques in gene expression and analysis: PCR and RT-PCR, microarray technology, DNA fingerprinting and recombinant DNA technology; prokaryotic and eukaryotic expression systems; Vectors: plasmids, phages, cosmids and BAC. Architecture of plant genome; plant tissue culture techniques; methods of gene transfer into plant cells and development of transgenic plants; manipulation of phenotypic traits in plants; plant cell fermentations and production of secondary metabolites using suspension/immobilized cell culture; expression of animal protein in plants; genetically modified crops. Animal cell metabolism and regulation; cell cycle; primary cell culture; nutritional requirements for animal cell culture; techniques for mass culture of animal cell lines; application of animal cell culture for production of vaccines, growth hormones; interferons, cytokines and therapeutic proteins; hybridoma technology and gene knockout; stem cells and its application in organ synthesis; gene therapy; transgenic animals and molecular pharming. Industrial bioprocesses: microbial production of organic acids, amino acids, proteins, polysaccharides, lipids, polyhydroxyalkanoates, antibiotics and pharmaceuticals; methods and applications of immobilization of cells and enzymes; kinetics of soluble and immobilized enzymes; biosensors; biofuels; biopesticides; environmental bioremediation. Microbial growth kinetics; batch, fed-batch and continuous culture of microbial cells; media for industrial fermentations; sterilization of air and media, design and operation of stirred tank, airlift, plug flow, packed bed, fluidized bed, membrane and hollow fibre reactors; aeration and agitation in aerobic fermentations; bioprocess calculations based on material and energy balance; Down stream processing in industrial biotechnology: filtration, precipitation, centrifugation, cell disintegration, solvent extraction, and chromatographic separations, membrane filtration, aqueous two phase separation. Bioinformatics; genomics; proteomics and computational biology. SECTION K. BOTANY Plant Systematics: Systems of classification (non-phylogenetic vs. phylogenetic - outline), plant groups, molecular systematics. Plant Anatomy: Plant cell structure, organization, organelles, cytoskeleton, cell wall and membranes; anatomy of root, stem and leaves, meristems, vascular system, their ontogeny, structure and functions, secondary growth in plants and stellar organization. Morphogenesis & Development: Cell cycle, cell division, life cycle of an angiosperm, pollination, fertilization, embryogenesis, seed formation, seed storage proteins, seed dormancy and germination. Concept of cellular totipotency, clonal propagation; organogenesis and somatic embryogenesis, artificial seed, somaclonal variation, secondary metabolism in plant cell culture, embryo culture, in vitro fertilization. Physiology and Biochemistry: Plant water relations, transport of minerals and solutes, stress physiology, stomatal physiology, signal transduction, N2 metabolism, photosynthesis, photorespiration; respiration, Flowering: photoperiodism and vernalization, biochemical mechanisms involved in flowering; molecular mechanism of senencensce and aging, biosynthesis, mechanism of action and physiological effects of plant growth regulators, structure and function of biomolecules, (proteins, carbohydrates, lipids, nucleic acid), enzyme kinetics. Genetics: Principles of Mendelian inheritance, linkage, recombination, genetic mapping; extrachromosomal inheritance; prokaryotic and eukaryotic genome organization, regulation of gene expression, gene mutation and repair, chromosomal aberrations (numerical and structural), transposons. Plant Breeding and Genetic Modification: Principles, methods – selection, hybridization, heterosis; male sterility, genetic maps and molecular markers, sporophytic and gametophytic self incompability, haploidy, triploidy, somatic cell hybridization, marker-assisted selection, gene transfer methods viz. direct and vector-mediated, plastid transformation, transgenic plants and their application in agriculture, molecular pharming, plantibodies. Economic Botany: A general account of economically and medicinally important plants- cereals, pulses, plants yielding fibers, timber, sugar, beverages, oils, rubber, pigments, dyes, gums, drugs and narcotics. Economic importance of algae, fungi, lichen and bacteria. Plant Pathology: Nature and classification of plant diseases, diseases of important crops caused by fungi, bacteria and viruses, and their control measures, mechanism(s) of pathogenesis and resistance, molecular detection of pathogens; plant-microbe beneficial interactions. Ecology and Environment: Ecosystems – types, dynamics, degradation, ecological succession; food chains and energy flow; vegetation types of the world, pollution and global warming, speciation and extinction, conservation strategies, cryopreservation, phytoremediation. SECTION L. MICROBIOLOGY Historical Perspective: Discovery of microbial world; Landmark discoveries relevant to the field of microbiology; Controversy over spontaneous generation; Role of microorganisms in transformation of organic matter and in the causation of diseases. Methods in Microbiology: Pure culture techniques; Theory and practice of sterilization; Principles of microbial nutrition; Enrichment culture techniques for isolation of microorganisms; Light-, phase contrast- and electron-microscopy. Microbial Taxonomy and Diversity: Bacteria, Archea and their broad classification; Eukaryotic microbes: Yeasts, molds and protozoa; Viruses and their classification; Molecular approaches to microbial taxonomy. Prokaryotic and Eukaryotic Cells: Structure and Function: Prokaryotic Cells: cell walls, cell membranes, mechanisms of solute transport across membranes, Flagella and Pili, Capsules, Cell inclusions like endospores and gas vesicles; Eukaryotic cell organelles: Endoplasmic reticulum, Golgi apparatus, mitochondria and chloroplasts. Microbial Growth: Definition of growth; Growth curve; Mathematical expression of exponential growth phase; Measurement of growth and growth yields; Synchronous growth; Continuous culture; Effect of environmental factors on growth. Control of Micro-organisms: Effect of physical and chemical agents; Evaluation of effectiveness of antimicrobial agents. Microbial Metabolism: Energetics: redox reactions and electron carriers; An overview of metabolism; Glycolysis; Pentose-phosphate pathway; Entner-Doudoroff pathway; Glyoxalate pathway; The citric acid cycle; Fermentation; Aerobic and anaerobic respiration; Chemolithotrophy; Photosynthesis; Calvin cycle; Biosynthetic pathway for fatty acids synthesis; Common regulatory mechanisms in synthesis of amino acids; Regulation of major metabolic pathways. Microbial Diseases and Host Pathogen Interaction: Normal microbiota; Classification of infectious diseases; Reservoirs of infection; Nosocomial infection; Emerging infectious diseases; Mechanism of microbial pathogenicity; Nonspecific defense of host; Antigens and antibodies; Humoral and cell mediated immunity; Vaccines; Immune deficiency; Human diseases caused by viruses, bacteria, and pathogenic fungi. Chemotherapy/Antibiotics: General characteristics of antimicrobial drugs; Antibiotics: Classification, mode of action and resistance; Antifungal and antiviral drugs. Microbial Genetics: Types of mutation; UV and chemical mutagens; Selection of mutants; Ames test for mutagenesis; Bacterial genetic system: transformation, conjugation, transduction, recombination, plasmids, transposons; DNA repair; Regulation of gene expression: repression and induction; Operon model; Bacterial genome with special reference to E.coli; Phage λ and its life cycle; RNA phages; RNA viruses; Retroviruses; Basic concept of microbial genomics. Microbial Ecology: Microbial interactions; Carbon, sulphur and nitrogen cycles; Soil microorganisms associated with vascular plants. SECTION M. ZOOLOGY Animal world: Animal diversity, distribution, systematics and classification of animals, phylogenetic relationships. Evolution: Origin and history of life on earth, theories of evolution, natural selection, adaptation, speciation. Genetics: Principles of inheritance, molecular basis of heredity, mutations, cytoplasmic inheritance, linkage and mapping of genes. Biochemistry and Molecular Biology: Nucleic acids, proteins, lipids and carbohydrates; replication, transcription and translation; regulation of gene expression, organization of genome, Kreb’s cycle, glycolysis, enzyme catalysis, hormones and their actions, vitamins. Cell Biology: Structure of cell, cellular organelles and their structure and function, cell cycle, cell division, chromosomes and chromatin structure. Eukaryotic gene organization and expression (Basic principles of signal transduction). Animal Anatomy and Physiology: Comparative physiology, the respiratory system, circulatory system, digestive system, the nervous system, the excretory system, the endocrine system, the reproductive system, the skeletal system, osmoregulation. Parasitology and Immunology: Nature of parasite, host-parasite relation, protozoan and helminthic parasites, the immune response, cellular and humoral immune response, evolution of the immune system. Development Biology: Embryonic development, cellular differentiation, organogenesis, metamorphosis, genetic basis of development, stem cells. Ecology: The ecosystem, habitats, the food chain, population dynamics, species diversity, zoogerography, biogeochemical cycles, conservation biology. Animal Behavior: Types of behaviors, courtship, mating and territoriality, instinct, learning and memory, social behavior across the animal taxa, communication, pheromones, evolution of animal behavior. THERE ARE NO LIMITS.AGGREGATE 75%.YOU CAN SEND IT ONLINE OR THROUGH HIMACHAL Pradesh Public Service Commission HAS(HPAS). |
#3
8th September 2010, 12:13 AM
|
|||
|
|||
Re: Syllabus of life sciences in GATE
dear friend,
you can get the syllabus of GATE of life sciences by log on to www.freshersworld.com. in this website you can get your syllabus as well as name of books, how to prepare for GATE exam etc and many more about the GATE exam. i think it is the best website for students. you can also get the syllabus of GATE by log on to official website of IIT delhi www.iitd.ac.in. also there is no limitation for appear in this exam.you can appear many times.but the validity of gate score card is only for two years from the year of passing this exam. you can get the application of GATE exam in the regional branches of SYNDICATE bank. good luck. |
#4
8th September 2010, 06:02 AM
|
|||
|
|||
Re: Syllabus of life sciences in GATE
dear friend ,
you want to know about GATE Syllabus for Life Sciences . Here it is given below----- there is no fixed number by which you get qualified , it depends upon you and the number of students appeared in the exam in this year. GATE Syllabus for Life Sciences - XL SECTION H: CHEMISTRY Atomic structure and periodicity: Plancks quantum theory, wave particle duality, uncertainty principle, quantum mechanical model of hydrogen atom; electronic configuration of atoms; periodic table and periodic properties; ionization energy, election affinity, electronegativity, atomic size. Structure and bonding: Ionic and covalent bonding, M.O. and V.B. approaches for diatomic molecules, VSEPR theory and shape of molecules, hybridisation, resonance, dipole moment, structure parameters such as bond length, bond angle and bond energy, hydrogen bonding, van der Waals interactions. Ionic solids, ionic radii, lattice energy (Born-Haber Cycle). s.p. and d Block Elements: Oxides, halides and hydrides of alkali and alkaline earth metals, B, Al, Si, N, P, and S, general characteristics of 3d elements, coordination complexes: valence bond and crystal field theory, color, geometry and magnetic properties. Chemical Equilibria: Colligative properties of solutions, ionic equilibria in solution, solubility product, common ion effect, hydrolysis of salts, pH, buffer and their applications in chemical analysis, equilibrium constants (Kc, Kp and Kx) for homogeneous reactions, Electrochemistry: Conductance, Kohlrausch law, Half Cell potentials, emf, Nernst equation, galvanic cells, thermodynamic aspects and their applications. Reaction Kinetics: Rate constant, order of reaction, molecularity, activation energy, zero, first and second order kinetics, catalysis and elementary enzyme reactions. Thermodynamics: First law, reversible and irreversible processes, internal energy, enthalpy, Kirchoff?s equation, heat of reaction, Hess law, heat of formation, Second law, entropy, free energy, and work function. Gibbs-Helmholtz equation, Clausius-Clapeyron equation, free energy change and equilibrium constant, Troutons rule, Third law of thermodynamics. Basis of Organic Reactions Mechanism: Elementary treatment of SN1, SN2, E1 and E2 reactions, Hoffmann and Saytzeff rules, Addition reactions, Markonikoff rule and Kharash effect, Diels-Alder reaction, aromatic electrophilic substitution, orientation effect as exemplified by various functional groups. Identification of functional groups by chemical tests Structure-Reactivity Correlations: Acids and bases, electronic and steric effects, optical and geometrical isomerism, tautomerism, conformers, concept of aromaticity SECTION I: BIOCHEMISTRY Organization of life. Importance of water. Cell structure and organelles. Structure and function of biomolecules: Amino acids, Carbohydrates, Lipids, Proteins and Nucleic acids. Biochemical separation techniques and characterization: ion exchange, size exclusion and affinity chromatography, electrophoresis, UV-visible, fluorescence and Mass spectrometry. Protein structure, folding and function: Myoglobin, Hemoglobin, Lysozyme, Ribonuclease A, Carboxypeptidase and Chymotrypsin. Enzyme kinetics including its regulation and inhibition, Vitamins and Coenzymes. Metabolism and bioenergetics. Generation and utilization of ATP. Metabolic pathways and their regulation: glycolysis, TCA cycle, pentose phosphate pathway, oxidative phosphorylation, gluconeogenesis, glycogen and fatty acid metabolism. Metabolism of Nitrogen containing compounds: nitrogen fixation, amino acids and nucleotides. Photosynthesis: the Calvin cycle. Biological membranes. Transport across membranes. Signal transduction; hormones and neurotransmitters. DNA replication, transcription and translation. Biochemical regulation of gene expression. Recombinant DNA technology and applications: PCR, site directed mutagenesis and DNA-microarray. Immune system. Active and passive immunity. Complement system. Antibody structure, function and diversity. Cells of the immune system: T, B and macrophages. T and B cell activation. Major histocompatibilty complex. T cell receptor. Immunological techniques: Immunodiffusion, immunoelectrophoresis, RIA and ELISA. SECTION J: BIOTECHNOLOGY Advanced techniques in gene expression and analysis: PCR and RT-PCR, microarray technology, DNA fingerprinting and recombinant DNA technology; prokaryotic and eukaryotic expression systems; Vectors: plasmids, phages, cosmids and BAC. Architecture of plant genome; plant tissue culture techniques; methods of gene transfer into plant cells and development of transgenic plants; manipulation of phenotypic traits in plants; plant cell fermentations and production of secondary metabolites using suspension/immobilized cell culture; expression of animal protein in plants; genetically modified crops. Animal cell metabolism & regulation; cell cycle; primary cell culture; nutritional requirements for animal cell culture; techniques for mass culture of animal cell lines; application of animal cell culture for production of vaccines, growth hormones; interferons, cytokines & therapeutic proteins; hybridoma technology and gene knockout; stem cells, its application in organ synthesis; gene therapy; transgenic animals & molecular pharming. Industrial bioprocesses: microbial production of organic acids, amino acids, proteins, polysaccharides, lipids, polyhydroxyalkanoates, antibiotics and pharmaceuticals; methods and applications of immobilization of cells and enzymes; kinetics of soluble and immobilized enzymes; biosensors; biofuels; biopesticides; environmental bioremediation. Microbial growth kinetics; batch, fed-batch and continuous culture of microbial cells; media for industrial fermentations; sterilization of air and media, design and operation of stirred tank, airlift, plug flow, packed bed, fluidized bed, membrane and hollow fibre reactors; aeration and agitation in aerobic fermentations; bioprocess calculations based on material and energy balance; Down stream processing in industrial biotechnology: filtration, precipitation, centrifugation, cell disintegration, solvent extraction, and chromatographic separations, membrane filtration, aqueous two phase separation. Bioinformatics: genomics; proteomics and computational biology. SECTION K: BOTANY Plant Systematics: Systems of classification (non-phylogenetic vs. phylogenetic - outline), plant groups, molecular systematics. Plant Anatomy: Plant cell structure, organization, organelles, cytoskeleton, cell wall and membranes; anatomy of root, stem and leaves, meristems, vascular system, their ontogeny, structure and functions, secondary growth in plants and stellar organization. Morphogenesis & Development: Cell cycle, cell division, life cycle of an angiosperm, pollination, fertilization, embryogenesis, seed formation, seed storage proteins, seed dormancy and germination. Concept of cellular totipotency, clonal propagation; organogenesis and somatic embryogenesis, artificial seed, somaclonal variation, secondary metabolism in plant cell culture, embryo culture, in vitro fertilization. Physiology and Biochemistry: Plant water relations, transport of minerals and solutes, stress physiology, stomatal physiology, signal transduction, N2 metabolism, photosynthesis, photorespiration; respiration, Flowering: photoperiodism and vernalization, biochemical mechanisms involved in flowering; molecular mechanism of senencensce and aging, biosynthesis, mechanism of action and physiological effects of plant growth regulators, structure and function of biomolecules, (proteins, carbohydrates, lipids, nucleic acid), enzyme kinetics. Genetics: Principles of Mendelian inheritance, linkage, recombination, genetic mapping; extrachromosomal inheritance; prokaryotic and eukaryotic genome organization, regulation of gene expression, gene mutation and repair, chromosomal aberrations (numerical and structural), transposons. Plant Breeding and Genetic Modification: Principles, methods ? selection, hybridization, heterosis; male sterility, genetic maps and molecular markers, sporophytic and gametophytic self incompability, haploidy, triploidy, somatic cell hybridization, marker-assisted selection, gene transfer methods viz. direct and vector-mediated, plastid transformation, transgenic plants and their application in agriculture, molecular pharming, plantibodies. Economic Botany: A general account of economically and medicinally important plants- cereals, pulses, plants yielding fibers, timber, sugar, beverages, oils, rubber, pigments, dyes, gums, drugs and narcotics. Economic importance of algae, fungi, lichen and bacteria. Plant Pathology: Nature and classification of plant diseases, diseases of important crops caused by fungi, bacteria and viruses, and their control measures, mechanism(s) of pathogenesis and resistance, molecular detection of pathogens; plant-microbe beneficial interactions. Ecology and Environment: Ecosystems types, dynamics, degradation, ecological succession; food chains and energy flow; vegetation types of the world, pollution and global warming, speciation and extinction, conservation strategies, cryopreservation, phytoremediation. SECTION L: MICROBIOLOGY Historical Perspective: Discovery of microbial world; Landmark discoveries relevant to the field of microbiology; Controversy over spontaneous generation; Role of microorganisms in transformation of organic matter and in the causation of diseases. Methods in Microbiology: Pure culture techniques; Theory and practice of sterilization; Principles of microbial nutrition; Enrichment culture techniques for isolation of microorganisms; Light-, phase contrast- and electron-microscopy. Microbial Taxonomy and Diversity: Bacteria, Archea and their broad classification; Eukaryotic microbes: Yeasts, molds and protozoa; Viruses and their classification; Molecular approaches to microbial taxonomy. Prokaryotic and Eukaryotic Cells: Structure and Function: Prokaryotic Cells: cell walls, cell membranes, mechanisms of solute transport across membranes, Flagella and Pili, C SECTION M: ZOOLOGY Animal world: Animal diversity, distribution, systematics and classification of animals, phylogenetic relationships. Evolution: Origin and history of life on earth, theories of evolution, natural selection, adaptation, speciation. Genetics: Principles of inheritance, molecular basis of heredity, mutations, cytoplasmic inheritance, linkage and mapping of genes. Biochemistry and Molecular Biology: Nucleic acids, proteins, lipids and carbohydrates; replication, transcription and translation; regulation of gene expression, organization of genome, Kreb?s cycle, glycolysis, enzyme catalysis, hormones and their actions, vitamins. Cell Biology: Structure of cell, cellular organelles and their structure and function, cell cycle, cell division, chromosomes and chromatin structure. Eukaryotic gene organization and expression (Basic principles of signal transduction). Animal Anatomy and Physiology: Comparative physiology, the respiratory system, circulatory system, digestive system, the nervous system, the excretory system, the endocrine system, the reproductive system, the skeletal system, osmoregulation. Parasitology and Immunology: Nature of parasite, host-parasite relation, protozoan and helminthic parasites, the immune response, cellular and humoral immune response, evolution of the immune system. Development Biology: Embryonic development, cellular differentiation, organogenesis, metamorphosis, genetic basis of development, stem cells. Ecology: The ecosystem, habitats, the food chain, population dynamics, species diversity, zoogerography, biogeochemical cycles, conservation biology. Animal Behaviour: Types of behaviours, courtship, mating and territoriality, instinct, learning and memory, social behaviour across the animal taxa, communication, pheromones, evolution of animal behaviour. Atomic structure and periodicity: Planck뭩 quantum theory, wave particle duality, uncertainty principle, quantum mechanical model of hydrogen atom; electronic configuration of atoms; periodic table and periodic properties; ionization energy, election affinity, electronegativity, atomic size. Structure and bonding: Ionic and covalent bonding, M.O. and V.B. approaches for diatomic molecules, VSEPR theory and shape of molecules, hybridisation, resonance, dipole moment, structure parameters such as bond length, bond angle and bond energy, hydrogen bonding, van der Waals interactions. Ionic solids, ionic radii, lattice energy (Born-Haber Cycle). s.p. and d Block Elements: Oxides, halides and hydrides of alkali and alkaline earth metals, B, Al, Si, N, P, and S, general characteristics of 3d elements, coordination complexes: valence bond and crystal field theory, color, geometry and magnetic properties. Chemical Equilibria: Colligative properties of solutions, ionic equilibria in solution, solubility product, common ion effect, hydrolysis of salts, pH, buffer and their applications in chemical analysis, equilibrium constants (Kc, Kp and Kx) for homogeneous reactions, Electrochemistry: Conductance, Kohlrausch law, Half Cell potentials, emf, Nernst equation, galvanic cells, thermodynamic aspects and their applications. Reaction Kinetics: Rate constant, order of reaction, molecularity, activation energy, zero, first and second order kinetics, catalysis and elementary enzyme reactions. Thermodynamics: First law, reversible and irreversible processes, internal energy, enthalpy, Kirchoff뭩 equation, heat of reaction, Hess law, heat of formation, Second law, entropy, free energy, and work function. Gibbs-Helmholtz equation, Clausius-Clapeyron equation, free energy change and equilibrium constant, Troutons rule, Third law of thermodynamics. Basis of Organic Reactions Mechanism: Elementary treatment of SN1, SN2, E1 and E2 reactions, Hoffmann and Saytzeff rules, Addition reactions, Markonikoff rule and Kharash effect, Diels-Alder reaction, aromatic electrophilic substitution, orientation effect as exemplified by various functional groups. Identification of functional groups by chemical tests Structure-Reactivity Correlations: Acids and bases, electronic and steric effects, optical and geometrical isomerism, tautomerism, conformers, concept of aromaticity SECTION I. BIOCHEMISTRY Organization of life. Importance of water. Cell structure and organelles. Structure and function of biomolecules: Amino acids, Carbohydrates, Lipids, Proteins and Nucleic acids. Biochemical separation techniques and characterization: ion exchange, size exclusion and affinity chromatography, electrophoresis, UV-visible, fluorescence and Mass spectrometry. Protein structure, folding and function: Myoglobin, Hemoglobin, Lysozyme, Ribonuclease A, Carboxypeptidase and Chymotrypsin. Enzyme kinetics including its regulation and inhibition, Vitamins and Coenzymes. Metabolism and bioenergetics. Generation and utilization of ATP. Metabolic pathways and their regulation: glycolysis, TCA cycle, pentose phosphate pathway, oxidative phosphorylation, gluconeogenesis, glycogen and fatty acid metabolism. Metabolism of Nitrogen containing compounds: nitrogen fixation, amino acids and nucleotides. Photosynthesis: the Calvin cycle. Biological membranes. Transport across membranes. Signal transduction; hormones and neurotransmitters. DNA replication, transcription and translation. Biochemical regulation of gene expression. Recombinant DNA technology and applications: PCR, site directed mutagenesis and DNA-microarray. Immune system. Active and passive immunity. Complement system. Antibody structure, function and diversity. Cells of the immune system: T, B and macrophages. T and B cell activation. Major histocompatibilty complex. T cell receptor. Immunological techniques: Immunodiffusion, immunoelectrophoresis, RIA and ELISA. SECTION J. BIOTECHNOLOGY Advanced techniques in gene expression and analysis: PCR and RT-PCR, microarray technology, DNA fingerprinting and recombinant DNA technology; prokaryotic and eukaryotic expression systems; Vectors: plasmids, phages, cosmids and BAC. Architecture of plant genome; plant tissue culture techniques; methods of gene transfer into plant cells and development of transgenic plants; manipulation of phenotypic traits in plants; plant cell fermentations and production of secondary metabolites using suspension/immobilized cell culture; expression of animal protein in plants; genetically modified crops. Animal cell metabolism and regulation; cell cycle; primary cell culture; nutritional requirements for animal cell culture; techniques for mass culture of animal cell lines; application of animal cell culture for production of vaccines, growth hormones; interferons, cytokines and therapeutic proteins; hybridoma technology and gene knockout; stem cells and its application in organ synthesis; gene therapy; transgenic animals and molecular pharming. Industrial bioprocesses: microbial production of organic acids, amino acids, proteins, polysaccharides, lipids, polyhydroxyalkanoates, antibiotics and pharmaceuticals; methods and applications of immobilization of cells and enzymes; kinetics of soluble and immobilized enzymes; biosensors; biofuels; biopesticides; environmental bioremediation. Microbial growth kinetics; batch, fed-batch and continuous culture of microbial cells; media for industrial fermentations; sterilization of air and media, design and operation of stirred tank, airlift, plug flow, packed bed, fluidized bed, membrane and hollow fibre reactors; aeration and agitation in aerobic fermentations; bioprocess calculations based on material and energy balance; Down stream processing in industrial biotechnology: filtration, precipitation, centrifugation, cell disintegration, solvent extraction, and chromatographic separations, membrane filtration, aqueous two phase separation. Bioinformatics; genomics; proteomics and computational biology. SECTION K. BOTANY Plant Systematics: Systems of classification (non-phylogenetic vs. phylogenetic - outline), plant groups, molecular systematics. Plant Anatomy: Plant cell structure, organization, organelles, cytoskeleton, cell wall and membranes; anatomy of root, stem and leaves, meristems, vascular system, their ontogeny, structure and functions, secondary growth in plants and stellar organization. Morphogenesis & Development: Cell cycle, cell division, life cycle of an angiosperm, pollination, fertilization, embryogenesis, seed formation, seed storage proteins, seed dormancy and germination. Concept of cellular totipotency, clonal propagation; organogenesis and somatic embryogenesis, artificial seed, somaclonal variation, secondary metabolism in plant cell culture, embryo culture, in vitro fertilization. Physiology and Biochemistry: Plant water relations, transport of minerals and solutes, stress physiology, stomatal physiology, signal transduction, N2 metabolism, photosynthesis, photorespiration; respiration, Flowering: photoperiodism and vernalization, biochemical mechanisms involved in flowering; molecular mechanism of senencensce and aging, biosynthesis, mechanism of action and physiological effects of plant growth regulators, structure and function of biomolecules, (proteins, carbohydrates, lipids, nucleic acid), enzyme kinetics. Genetics: Principles of Mendelian inheritance, linkage, recombination, genetic mapping; extrachromosomal inheritance; prokaryotic and eukaryotic genome organization, regulation of gene expression, gene mutation and repair, chromosomal aberrations (numerical and structural), transposons. Plant Breeding and Genetic Modification: Principles, methods ?selection, hybridization, heterosis; male sterility, genetic maps and molecular markers, sporophytic and gametophytic self incompability, haploidy, triploidy, somatic cell hybridization, marker-assisted selection, gene transfer methods viz. direct and vector-mediated, plastid transformation, transgenic plants and their application in agriculture, molecular pharming, plantibodies. Economic Botany: A general account of economically and medicinally important plants- cereals, pulses, plants yielding fibers, timber, sugar, beverages, oils, rubber, pigments, dyes, gums, drugs and narcotics. Economic importance of algae, fungi, lichen and bacteria. Plant Pathology: Nature and classification of plant diseases, diseases of important crops caused by fungi, bacteria and viruses, and their control measures, mechanism(s) of pathogenesis and resistance, molecular detection of pathogens; plant-microbe beneficial interactions. Ecology and Environment: Ecosystems ?types, dynamics, degradation, ecological succession; food chains and energy flow; vegetation types of the world, pollution and global warming, speciation and extinction, conservation strategies, cryopreservation, phytoremediation. SECTION L. MICROBIOLOGY Historical Perspective: Discovery of microbial world; Landmark discoveries relevant to the field of microbiology; Controversy over spontaneous generation; Role of microorganisms in transformation of organic matter and in the causation of diseases. Methods in Microbiology: Pure culture techniques; Theory and practice of sterilization; Principles of microbial nutrition; Enrichment culture techniques for isolation of microorganisms; Light-, phase contrast- and electron-microscopy. Microbial Taxonomy and Diversity: Bacteria, Archea and their broad classification; Eukaryotic microbes: Yeasts, molds and protozoa; Viruses and their classification; Molecular approaches to microbial taxonomy. Prokaryotic and Eukaryotic Cells: Structure and Function: Prokaryotic Cells: cell walls, cell membranes, mechanisms of solute transport across membranes, Flagella and Pili, Capsules, Cell inclusions like endospores and gas vesicles; Eukaryotic cell organelles: Endoplasmic reticulum, Golgi apparatus, mitochondria and chloroplasts. Microbial Growth: Definition of growth; Growth curve; Mathematical expression of exponential growth phase; Measurement of growth and growth yields; Synchronous growth; Continuous culture; Effect of environmental factors on growth. Control of Micro-organisms: Effect of physical and chemical agents; Evaluation of effectiveness of antimicrobial agents. Microbial Metabolism: Energetics: redox reactions and electron carriers; An overview of metabolism; Glycolysis; Pentose-phosphate pathway; Entner-Doudoroff pathway; Glyoxalate pathway; The citric acid cycle; Fermentation; Aerobic and anaerobic respiration; Chemolithotrophy; Photosynthesis; Calvin cycle; Biosynthetic pathway for fatty acids synthesis; Common regulatory mechanisms in synthesis of amino acids; Regulation of major metabolic pathways. Microbial Diseases and Host Pathogen Interaction: Normal microbiota; Classification of infectious diseases; Reservoirs of infection; Nosocomial infection; Emerging infectious diseases; Mechanism of microbial pathogenicity; Nonspecific defense of host; Antigens and antibodies; Humoral and cell mediated immunity; Vaccines; Immune deficiency; Human diseases caused by viruses, bacteria, and pathogenic fungi. Chemotherapy/Antibiotics: General characteristics of antimicrobial drugs; Antibiotics: Classification, mode of action and resistance; Antifungal and antiviral drugs. Microbial Genetics: Types of mutation; UV and chemical mutagens; Selection of mutants; Ames test for mutagenesis; Bacterial genetic system: transformation, conjugation, transduction, recombination, plasmids, transposons; DNA repair; Regulation of gene expression: repression and induction; Operon model; Bacterial genome with special reference to E.coli; Phage ? and its life cycle; RNA phages; RNA viruses; Retroviruses; Basic concept of microbial genomics. Microbial Ecology: Microbial interactions; Carbon, sulphur and nitrogen cycles; Soil microorganisms associated with vascular plants. SECTION M. ZOOLOGY Animal world: Animal diversity, distribution, systematics and classification of animals, phylogenetic relationships. Evolution: Origin and history of life on earth, theories of evolution, natural selection, adaptation, speciation. Genetics: Principles of inheritance, molecular basis of heredity, mutations, cytoplasmic inheritance, linkage and mapping of genes. Biochemistry and Molecular Biology: Nucleic acids, proteins, lipids and carbohydrates; replication, transcription and translation; regulation of gene expression, organization of genome, Kreb뭩 cycle, glycolysis, enzyme catalysis, hormones and their actions, vitamins. Cell Biology: Structure of cell, cellular organelles and their structure and function, cell cycle, cell division, chromosomes and chromatin structure. Eukaryotic gene organization and expression (Basic principles of signal transduction). Animal Anatomy and Physiology: Comparative physiology, the respiratory system, circulatory system, digestive system, the nervous system, the excretory system, the endocrine system, the reproductive system, the skeletal system, osmoregulation. Parasitology and Immunology: Nature of parasite, host-parasite relation, protozoan and helminthic parasites, the immune response, cellular and humoral immune response, evolution of the immune system. Development Biology: Embryonic development, cellular differentiation, organogenesis, metamorphosis, genetic basis of development, stem cells. Ecology: The ecosystem, habitats, the food chain, population dynamics, species diversity, zoogerography, biogeochemical cycles, conservation biology. Animal Behaviour: Types of behaviours, courtship, mating and territoriality, instinct, learning and memory, social behaviour across the animal taxa, communication, pheromones, evolution of animal behaviour. good luck.... |
#5
8th September 2010, 09:37 PM
|
|||
|
|||
Re: Syllabus of life sciences in GATE
hi friend,
There is no life science stream in GATE exam, however you can persue GATE score through your master degree subject : microbiology . I cant attach the syllabus of Microbiology because there is some problem occuring each time i do so. Here is the syllabus: Historical Perspective: Discovery of microbial world; Landmark discoveries relevant to the field of microbiology; Controversy over spontaneous generation; Role of microorganisms in transformation of organic matter and in the causation of diseases. Methods in Microbiology: Pure culture techniques; Theory and practice of sterilization; Principles of microbial nutrition; Enrichment culture techniques for isolation of microorganisms; Light-, phase contrast- and electron-microscopy. Microbial Taxonomy and Diversity: Bacteria, Archea and their broad classification; Eukaryotic microbes: Yeasts, molds and protozoa; Viruses and their classification; Molecular approaches to microbial taxonomy. Prokaryotic and Eukaryotic Cells: Structure and Function Prokaryotic Cells: cell walls, cell membranes, mechanisms of solute transport across membranes, Flagella and Pili, Capsules, Cell inclusions like endospores and gas vesicles; Eukaryotic cell organelles: Endoplasmic reticulum, Golgi apparatus, mitochondria and chloroplasts. Microbial Growth: Definition of growth; Growth curve; Mathematical expression of exponential growth phase; Measurement of growth and growth yields; Synchronous growth; Continuous culture; Effect of environmental factors on growth. Control of Micro-organisms: Effect of physical and chemical agents; Evaluation of effectiveness of antimicrobial agents. Microbial Metabolism: Energetics: redox reactions and electron carriers; An overview of metabolism; Glycolysis; Pentose-phosphate pathway; Entner-Doudoroff pathway; Glyoxalate pathway; The citric acid cycle; Fermentation; Aerobic and anaerobic respiration; Chemolithotrophy; Photosynthesis; Calvin cycle; Biosynthetic pathway for fatty acids synthesis; Common regulatory mechanisms in synthesis of amino acids; Regulation of major metabolic pathways. Microbial Diseases and Host Pathogen Interaction: Normal microbiota; Classification of infectious diseases; Reservoirs of infection; Nosocomial infection; Emerging infectious diseases; Mechanism of microbial pathogenicity; Nonspecific defense of host; Antigens and antibodies; Humoral and cell mediated immunity; Vaccines; Immune deficiency; Human diseases caused by viruses, bacteria, and pathogenic fungi. Chemotherapy/Antibiotics: General characteristics of antimicrobial drugs; Antibiotics: Classification, mode of action and resistance; Antifungal and antiviral drugs. Microbial Genetics: Types of mutation; UV and chemical mutagens; Selection of mutants; Ames test for mutagenesis; Bacterial genetic system: transformation, conjugation, transduction, recombination, plasmids, transposons; DNA repair; Regulation of gene expression: repression and induction; Operon model; Bacterial genome with special reference to E.coli; Phage λ and its life cycle; RNA phages; RNA viruses; Retroviruses; Basic concept of microbial genomics. Microbial Ecology: Microbial interactions; Carbon, sulphur and nitrogen cycles; Soil microorganisms associated with vascular plants and at last aptitude: Verbal Ability: English grammar, sentence completion, verbal analogies, word groups, instructions, critical reasoning and verbal deduction. Numerical Ability: Numerical computation, numerical estimation, numerical reasoning and data interpretation. You can obtain the brochure of GATE from main PNB bank in Hamirpur district of himachal pradesh. However you can apply it online from anywhere in india. |
#6
9th September 2010, 12:09 AM
|
|||
|
|||
Re: Syllabus of life sciences in GATE
there is no particular subject for life science. but there is the paper like botany, microbiology, zoology. you may appear in this paper. the syllabus for this paper for the year 2010 is given in the official website http://www.iitk.ac.in/gate/gate2010/syllabi.php just check it. you will get also other information related to GATE from this website.
|
#7
9th September 2010, 12:18 AM
|
|||
|
|||
Re: Syllabus of life sciences in GATE
there is no particular subject for life science. but there is the paper like botany, microbiology, zoology. you may appear in this paper. the syllabus for this paper for the year 2010 is given in the official website http://www.iitk.ac.in/gate/gate2010/syllabi.php just check it. you will get also other information related to GATE from this website.
|
#8
9th September 2010, 02:23 AM
|
|||
|
|||
Re: Syllabus of life sciences in GATE
Quote:
However as attempts of GATE is concerned, it is not at all an issue to worry. you are eligible to write GATE. You can do masters in Life Sciences with GATE qualification. *GATE qualifying marks is declared by the board and varies every year (not same all the time) Download the GATE brochure Here to get Complete the procedure to apply. Download(Right click on the link and click on Save Link As.. or Save Target As..) Regards, MASK |
#9
9th September 2010, 09:43 AM
|
|||
|
|||
Re: Syllabus of life sciences in GATE
dear friend
syllabus of life science ..................... SECTION H. CHEMISTRY (Compulsory) Atomic structure and periodicity: Planck’s quantum theory, wave particle duality, uncertainty principle, quantum mechanical model of hydrogen atom; electronic configuration of atoms; periodic table and periodic properties; ionization energy, election affinity, electronegativity, atomic size. Structure and bonding: Ionic and covalent bonding, M.O. and V.B. approaches for diatomic molecules, VSEPR theory and shape of molecules, hybridisation, resonance, dipole moment, structure parameters such as bond length, bond angle and bond energy, hydrogen bonding, van der Waals interactions. Ionic solids, ionic radii, lattice energy (Born-Haber Cycle). s.p. and d Block Elements: Oxides, halides and hydrides of alkali and alkaline earth metals, B, Al, Si, N, P, and S, general characteristics of 3d elements, coordination complexes: valence bond and crystal field theory, color, geometry and magnetic properties. Chemical Equilibria: Colligative properties of solutions, ionic equilibria in solution, solubility product, common ion effect, hydrolysis of salts, pH, buffer and their applications in chemical analysis, equilibrium constants (Kc, Kp and Kx) for homogeneous reactions, Electrochemistry: Conductance, Kohlrausch law, Half Cell potentials, emf, Nernst equation, galvanic cells, thermodynamic aspects and their applications. Reaction Kinetics: Rate constant, order of reaction, molecularity, activation energy, zero, first and second order kinetics, catalysis and elementary enzyme reactions. Thermodynamics: First law, reversible and irreversible processes, internal energy, enthalpy, Kirchoff’s equation, heat of reaction, Hess law, heat of formation, Second law, entropy, free energy, and work function. Gibbs-Helmholtz equation, Clausius-Clapeyron equation, free energy change and equilibrium constant, Troutons rule, Third law of thermodynamics. Basis of Organic Reactions Mechanism: Elementary treatment of SN1, SN2, E1 and E2 reactions, Hoffmann and Saytzeff rules, Addition reactions, Markonikoff rule and Kharash effect, Diels-Alder reaction, aromatic electrophilic substitution, orientation effect as exemplified by various functional groups. Identification of functional groups by chemical tests Structure-Reactivity Correlations: Acids and bases, electronic and steric effects, optical and geometrical isomerism, tautomerism, conformers, concept of aromaticity SECTION I. BIOCHEMISTRY Organization of life. Importance of water. Cell structure and organelles. Structure and function of biomolecules: Amino acids, Carbohydrates, Lipids, Proteins and Nucleic acids. Biochemical separation techniques and characterization: ion exchange, size exclusion and affinity chromatography, electrophoresis, UV-visible, fluorescence and Mass spectrometry. Protein structure, folding and function: Myoglobin, Hemoglobin, Lysozyme, Ribonuclease A, Carboxypeptidase and Chymotrypsin. Enzyme kinetics including its regulation and inhibition, Vitamins and Coenzymes. Metabolism and bioenergetics. Generation and utilization of ATP. Metabolic pathways and their regulation: glycolysis, TCA cycle, pentose phosphate pathway, oxidative phosphorylation, gluconeogenesis, glycogen and fatty acid metabolism. Metabolism of Nitrogen containing compounds: nitrogen fixation, amino acids and nucleotides. Photosynthesis: the Calvin cycle. Biological membranes. Transport across membranes. Signal transduction; hormones and neurotransmitters. DNA replication, transcription and translation. Biochemical regulation of gene expression. Recombinant DNA technology and applications: PCR, site directed mutagenesis and DNAmicroarray. Immune system. Active and passive immunity. Complement system. Antibody structure, function and diversity. Cells of the immune system: T, B and macrophages. T and B cell activation. Major histocompatibilty complex. T cell receptor. Immunological techniques: Immunodiffusion, immunoelectrophoresis, RIA and ELISA. SECTION J. BIOTECHNOLOGY Advanced techniques in gene expression and analysis: PCR and RT-PCR, microarray technology, DNA fingerprinting and recombinant DNA technology; prokaryotic and eukaryotic expression systems; Vectors: plasmids, phages, cosmids and BAC. Architecture of plant genome; plant tissue culture techniques; methods of gene transfer into plant cells and development of transgenic plants; manipulation of phenotypic traits in plants; plant cell fermentations and production of secondary metabolites using suspension/immobilized cell culture; expression of animal protein in plants; genetically modified crops. Animal cell metabolism and regulation; cell cycle; primary cell culture; nutritional requirements for animal cell culture; techniques for mass culture of animal cell lines; application of animal cell culture for production of vaccines, growth hormones; interferons, cytokines and therapeutic proteins; hybridoma technology and gene knockout; stem cells and its application in organ synthesis; gene therapy; transgenic animals and molecular pharming. Industrial bioprocesses: microbial production of organic acids, amino acids, proteins, polysaccharides, lipids, polyhydroxyalkanoates, antibiotics and pharmaceuticals; methods and applications of immobilization of cells and enzymes; kinetics of soluble and immobilized enzymes; biosensors; biofuels; biopesticides; environmental bioremediation. Microbial growth kinetics; batch, fed-batch and continuous culture of microbial cells; media for industrial fermentations; sterilization of air and media, design and operation of stirred tank, airlift, plug flow, packed bed, fluidized bed, membrane and hollow fibre reactors; aeration and agitation in aerobic fermentations; bioprocess calculations based on material and energy balance; Down stream processing in industrial biotechnology: filtration, precipitation, centrifugation, cell disintegration, solvent extraction, and chromatographic separations, membrane filtration, aqueous two phase separation. Bioinformatics; genomics; proteomics and computational biology. SECTION K. BOTANY Plant Systematics: Systems of classification (non-phylogenetic vs. phylogenetic - outline), plant groups, molecular systematics. Plant Anatomy: Plant cell structure, organization, organelles, cytoskeleton, cell wall and membranes; anatomy of root, stem and leaves, meristems, vascular system, their ontogeny, structure and functions, secondary growth in plants and stellar organization. Morphogenesis & Development: Cell cycle, cell division, life cycle of an angiosperm, pollination, fertilization, embryogenesis, seed formation, seed storage proteins, seed dormancy and germination. Concept of cellular totipotency, clonal propagation; organogenesis and somatic embryogenesis, artificial seed, somaclonal variation, secondary metabolism in plant cell culture, embryo culture, in vitro fertilization. Physiology and Biochemistry: Plant water relations, transport of minerals and solutes, stress physiology, stomatal physiology, signal transduction, N2 metabolism, photosynthesis, photorespiration; respiration, Flowering: photoperiodism and vernalization, biochemical mechanisms involved in flowering; molecular mechanism of senencensce and aging, biosynthesis, mechanism of action and physiological effects of plant growth regulators, structure and function of biomolecules, (proteins, carbohydrates, lipids, nucleic acid), enzyme kinetics. Genetics: Principles of Mendelian inheritance, linkage, recombination, genetic mapping; extrachromosomal inheritance; prokaryotic and eukaryotic genome organization, regulation of gene expression, gene mutation and repair, chromosomal aberrations (numerical and structural), transposons. Plant Breeding and Genetic Modification: Principles, methods – selection, hybridization, heterosis; male sterility, genetic maps and molecular markers, sporophytic and gametophytic self incompability, haploidy, triploidy, somatic cell hybridization, marker-assisted selection, gene transfer methods viz. direct and vector-mediated, plastid transformation, transgenic plants and their application in agriculture, molecular pharming, plantibodies. Economic Botany: A general account of economically and medicinally important plants- cereals, pulses, plants yielding fibers, timber, sugar, beverages, oils, rubber, pigments, dyes, gums, drugs and narcotics. Economic importance of algae, fungi, lichen and bacteria. Plant Pathology: Nature and classification of plant diseases, diseases of important crops caused by fungi, bacteria and viruses, and their control measures, mechanism(s) of pathogenesis and resistance, molecular detection of pathogens; plant-microbe beneficial interactions. Ecology and Environment: Ecosystems – types, dynamics, degradation, ecological succession; food chains and energy flow; vegetation types of the world, pollution and global warming, speciation and extinction, conservation strategies, cryopreservation, phytoremediation. SECTION L. MICROBIOLOGY Historical Perspective: Discovery of microbial world; Landmark discoveries relevant to the field of microbiology; Controversy over spontaneous generation; Role of microorganisms in transformation of organic matter and in the causation of diseases. Methods in Microbiology: Pure culture techniques; Theory and practice of sterilization; Principles of microbial nutrition; Enrichment culture techniques for isolation of microorganisms; Light-, phase contrast- and electron-microscopy. Microbial Taxonomy and Diversity: Bacteria, Archea and their broad classification; Eukaryotic microbes: Yeasts, molds and protozoa; Viruses and their classification; Molecular approaches to microbial taxonomy. Prokaryotic and Eukaryotic Cells: Structure and Function: Prokaryotic Cells: cell walls, cell membranes, mechanisms of solute transport across membranes, Flagella and Pili, Capsules, Cell inclusions like endospores and gas vesicles; Eukaryotic cell organelles: Endoplasmic reticulum, Golgi apparatus, mitochondria and chloroplasts. Microbial Growth: Definition of growth; Growth curve; Mathematical expression of exponential growth phase; Measurement of growth and growth yields; Synchronous growth; Continuous culture; Effect of environmental factors on growth. Control of Micro-organisms: Effect of physical and chemical agents; Evaluation of effectiveness of antimicrobial agents. Microbial Metabolism: Energetics: redox reactions and electron carriers; An overview of metabolism; Glycolysis; Pentose-phosphate pathway; Entner-Doudoroff pathway; Glyoxalate pathway; The citric acid cycle; Fermentation; Aerobic and anaerobic respiration; Chemolithotrophy; Photosynthesis; Calvin cycle; Biosynthetic pathway for fatty acids synthesis; Common regulatory mechanisms in synthesis of amino acids; Regulation of major metabolic pathways. Microbial Diseases and Host Pathogen Interaction: Normal microbiota; Classification of infectious diseases; Reservoirs of infection; Nosocomial infection; Emerging infectious diseases; Mechanism of microbial pathogenicity; Nonspecific defense of host; Antigens and antibodies; Humoral and cell mediated immunity; Vaccines; Immune deficiency; Human diseases caused by viruses, bacteria, and pathogenic fungi. Chemotherapy/Antibiotics: General characteristics of antimicrobial drugs; Antibiotics: Classification, mode of action and resistance; Antifungal and antiviral drugs. Microbial Genetics: Types of mutation; UV and chemical mutagens; Selection of mutants; Ames test for mutagenesis; Bacterial genetic system: transformation, conjugation, transduction, recombination, plasmids, transposons; DNA repair; Regulation of gene expression: repression and induction; Operon model; Bacterial genome with special reference to E.coli; Phage λ and its life cycle; RNA phages; RNA viruses; Retroviruses; Basic concept of microbial genomics. Microbial Ecology: Microbial interactions; Carbon, sulphur and nitrogen cycles; Soil microorganisms associated with vascular plants. SECTION M. ZOOLOGY Animal world: Animal diversity, distribution, systematics and classification of animals, phylogenetic relationships. Evolution: Origin and history of life on earth, theories of evolution, natural selection, adaptation, speciation. Genetics: Principles of inheritance, molecular basis of heredity, mutations, cytoplasmic inheritance, linkage and mapping of genes. Biochemistry and Molecular Biology: Nucleic acids, proteins, lipids and carbohydrates; replication, transcription and translation; regulation of gene expression, organization of genome, Kreb’s cycle, glycolysis, enzyme catalysis, hormones and their actions, vitamins. Cell Biology: Structure of cell, cellular organelles and their structure and function, cell cycle, cell division, chromosomes and chromatin structure. Eukaryotic gene organization and expression (Basic principles of signal transduction). Animal Anatomy and Physiology: Comparative physiology, the respiratory system, circulatory system, digestive system, the nervous system, the excretory system, the endocrine system, the reproductive system, the skeletal system, osmoregulation. Parasitology and Immunology: Nature of parasite, host-parasite relation, protozoan and helminthic parasites, the immune response, cellular and humoral immune response, evolution of the immune system. Development Biology: Embryonic development, cellular differentiation, organogenesis, metamorphosis, genetic basis of development, stem cells. Ecology: The ecosystem, habitats, the food chain, population dynamics, species diversity, zoogerography, biogeochemical cycles, conservation biology. Animal Behaviour: Types of behaviours, courtship, mating and territoriality, instinct, learning and memory, social behaviour across the animal taxa, communication, pheromones, evolution of animal behaviour. all the bedt |
#10
9th September 2010, 04:05 PM
|
|||
|
|||
Re: Syllabus of life sciences in GATE
Syllabus of Life Sciences in GATE includes following sections like :-
Section H : Chemistry (Compulsory) Section I : Biochemistry Section J : Biotechnology Section K : Botany Section L : Microbiology Section M : Zoology For full details check attached life_science_gate.txt file. As there is no limit in GATE attempt you can appear how many times you want. |
#11
9th September 2010, 10:38 PM
|
|||
|
|||
Re: Syllabus of life sciences in GATE
Dear Friend,
As you are a student of M.Sc in Bicrobiology,then you are eligible for the GATE exam. Actually there is no limit of the attempt in the exam,The validity of the GATE score is 2yr. in general each students apply 2years,but you can as you want. There are some branches in which you can get the application form:State Bank Of India- Sanganeri,Himachal predesh ,UCO bank,himachal pradesh. the Syllabus of the biology(XL) is as follows: 1:Section H: Chemistry(Compulsory) i)Atomic structure and periodicity ii)Structure and bonding iii)s.p. and d Block Elements iv)Chemical Equilibria v)Electro-chemistry vi)Reaction Kinetics vii)Thermodynamics viii)Basis of Organic Reactions Mechanism viii)Structure-Reactivity Correlations 2:Section I: Biochemistry i)Organization of life. Importance of water. Cell structure and organelles. Structure and function of biomolecules ii)Metabolism and bioenergetics. Generation and utilization of ATP. Metabolic pathways and their regulation 3:Section J:Biotechnology i)Advanced techniques in gene expression and analysis ii)Industrial bioprocesses iii)Bioinformatics 4:Section K:Botany i)Plant Systematics ii)Plant Anatomy iii)Morphogenesis & Development iv)Physiology and Biochemistry v)Genetics vi)Plant Breeding and Genetic Modification vii)Economic Botany viii)Plant Pathology ix)Ecology and Environment 5:Section L:Microbiology i)Historical Perspective ii)Methods in Microbiology iii)Microbial Taxonomy and Diversity iv)Prokaryotic and Eukaryotic Cells 6:Section M:Zoology: i)Animal world ii)Evolution iii)Genetics iv)Biochemistry and Molecular Biology v)Cell Biology vi)Animal Anatomy and Physiology vii)Parasitology and Immunology viii)Development Biology ix)Ecology x)Animal Behaviour xi)Atomic structure and periodicity for details syllabus visit:http://www.onestopgate.com/gate-syllabus/life-science.asp Good luck. |
#12
10th January 2011, 09:08 PM
|
|||
|
|||
Re: Syllabus of life sciences in GATE
Syllabus for Food Technology (XL: Section M)
Food Chemistry and Nutrition: Carbohydrates: Structure and functional properties of mono- oligo-polysaccharides including starch, cellulose, pectic substances and dietary fibre; Proteins: Classification and structure of proteins in food; Lipids: Classification and structure of lipids, Rancidity of fats, Polymerization and polymorphism; Pigments: Carotenoids, chlorophylls, anthocyanins, tannins and myoglobin; Food flavours: Terpenes, esters, ketones and quinones; Enzymes: Specificity, Kinetics and inhibition, Coenzymes, Enzymatic and non-enzymatic browning; Nutrition: Balanced diet, Essential amino acids and fatty acids, PER, Water soluble and fat soluble vitamins, Role of minerals in nutrition, Antinutrients, Nutrition deficiency diseases. Food Microbiology: Characteristics of microorganisms: Morphology, structure and detection of bacteria, yeast and mold in food, Spores and vegetative cells; Microbial growth in food: Intrinsic and extrinsic factors, Growth and death kinetics, serial dilution method for quantification; Food spoilage: Contributing factors, Spoilage bacteria, Microbial spoilage of milk and milk products, meat and meat products; Foodborne disease: Toxins produced by Staphylococcus, Clostridium and Aspergillus; Bacterial pathogens: Salmonella, Bacillus, Listeria, Escherichia coli, Shigella, Campylobacter; Fermented food: Buttermilk, yoghurt, cheese, sausage, alcoholic beverage, vinegar, sauerkraut and soya sauce. Food Products Technology: Processing principles: Canning, chilling, freezing, dehydration, control of water activity, CA and MA storage, fermentation, hurdle technology, addition of preservatives and food additives, Food packaging, cleaning in place and food laws.; Grain products processing: Milling of rice, wheat, and maize, parboiling of paddy, production of bread, biscuits, extruded products and breakfast cereals, Solvent extraction, refining and hydrogenation of oil; Fruits, vegetables and plantation products processing: Extraction, clarification concentration and packaging of fruit juice, Production of jam, jelly, marmalade, squash, candies, and pickles, pectin from fruit waste, tea, coffee, chocolate and essential oils from spices; Milk and milk products processing: Pasteurized and sterilized milk, cream, butter, ghee, ice-cream, cheese and milk powder; Animal products processing: Drying and canning of fish, post mortem changes, tenderization and freezing of meat, egg powder. Food Engineering: Mass and energy balance; Momentum transfer: Flow rate and pressure drop relationships for Newtonian fluids flowing through pipe, Characteristics of non-Newtonian fluids – generalized viscosity coefficient and Reynolds number, Flow of compressible fluid, Flow measurement, Pumps and compressors; Heat transfer: Heat transfer by conduction, convection, radiation, boiling and condensation, Unsteady state heat transfer in simple geometry, NTU- effectiveness relationship of co-current and counter current double pipe heat exchanger; Mass transfer: Molecular diffusion and Fick’s Law, Steady state mass transfer, Convective mass transfer, Permeability of films and laminates; Mechanical operations: Energy requirement and rate of operations involved in size reduction of solids, high pressure homogenization, filtration, centrifugation, settling, sieving, flow through porous bed, agitation of liquid, solid-solid mixing, and single screw extrusion; Thermal operations: Energy requirement and rate of operations involved in process time evaluation in batch and continuous sterilization, evaporation of liquid foods, hot air drying of solids, spray and freeze-drying, freezing and crystallization; Mass transfer operations: Properties of air-water vapor mixture; Humidification and dehumidification operations. GATE 2011 Syllabus for Zoology (XL-Section L) Syllabus for Zoology (XL: Section L) (Optional Section) Animal world: Animal diversity, distribution, systematics and classification of animals, phylogenetic relationships. Evolution: Origin and history of life on earth, theories of evolution, natural selection, adaptation, speciation. Genetics: Principles of inheritance, molecular basis of heredity, mutations, cytoplasmic inheritance, linkage and mapping of genes. Biochemistry and Molecular Biology: Nucleic acids, proteins, lipids and carbohydrates; replication, transcription and translation; regulation of gene expression, organization of genome, Kreb’s cycle, glycolysis, enzyme catalysis, hormones and their actions, vitamins. Cell Biology: Structure of cell, cellular organelles and their structure and function, cell cycle, cell division, chromosomes and chromatin structure. Eukaryotic gene organization and expression (Basic principles of signal transduction ). Animal Anatomy and Physiology: Comparative physiology, the respiratory system, circulatory system, digestive system, the nervous system, the excretory system, the endocrine system, the reproductive system, the skeletal system, osmoregulation. Parasitology and Immunology: Nature of parasite, host-parasite relation, protozoan and helminthic parasites, the immune response, cellular and humoral immune response, evolution of the immune system. Development Biology: Embryonic development, cellular differentiation, organogenesis, metamorphosis, genetic basis of development, stem cells. Ecology: The ecosystem, habitats, the food chain, population dynamics, species diversity, zoogerography, biogeochemical cycles, conservation biology. Animal Behaviour: Types of behaviours, courtship, mating and territoriality, instinct, learning and memory, social behaviour across the animal taxa, communication, pheromones, evolution of animal behaviour. GATE 2011 XL Section K Microbiology Syllabus Historical Perspective: Discovery of microbial world; Landmark discoveries relevant to the field of microbiology; Controversy over spontaneous generation; Role of microorganisms in transformation of organic matter and in the causation of diseases. Methods in Microbiology: Pure culture techniques; Theory and practice of sterilization; Principles of microbial nutrition; Enrichment culture techniques for isolation of microorganisms; Light-, phase contrast- and electron-microscopy. Microbial Taxonomy and Diversity: Bacteria, Archea and their broad classification; Eukaryotic microbes: Yeasts, molds and protozoa; Viruses and their classification; Molecular approaches to microbial taxonomy. Prokaryotic and Eukaryotic Cells: Structure and Function Prokaryotic Cells: cell walls, cell membranes, mechanisms of solute transport across membranes, Flagella and Pili, Capsules, Cell inclusions like endospores and gas vesicles; Eukaryotic cell organelles: Endoplasmic reticulum, Golgi apparatus, mitochondria and chloroplasts. Microbial Growth: Definition of growth; Growth curve; Mathematical expression of exponential growth phase; Measurement of growth and growth yields; Synchronous growth; Continuous culture; Effect of environmental factors on growth. Control of Micro-organisms: Effect of physical and chemical agents; Evaluation of effectiveness of antimicrobial agents. Microbial Metabolism: Energetics: redox reactions and electron carriers; An overview of metabolism; Glycolysis; Pentose-phosphate pathway; Entner-Doudoroff pathway; Glyoxalate pathway; The citric acid cycle; Fermentation; Aerobic and anaerobic respiration; Chemolithotrophy; Photosynthesis; Calvin cycle; Biosynthetic pathway for fatty acids synthesis; Common regulatory mechanisms in synthesis of amino acids; Regulation of major metabolic pathways. Microbial Diseases and Host Pathogen Interaction: Normal microbiota; Classification of infectious diseases; Reservoirs of infection; Nosocomial infection; Emerging infectious diseases; Mechanism of microbial pathogenicity; Nonspecific defense of host; Antigens and antibodies; Humoral and cell mediated immunity; Vaccines; Immune deficiency; Human diseases caused by viruses, bacteria, and pathogenic fungi. Chemotherapy/Antibiotics: General characteristics of antimicrobial drugs; Antibiotics: Classification, mode of action and resistance; Antifungal and antiviral drugs. Microbial Genetics: Types of mutation; UV and chemical mutagens; Selection of mutants; Ames test for mutagenesis; Bacterial genetic system: transformation, conjugation, transduction, recombination, plasmids, transposons; DNA repair; Regulation of gene expression: repression and induction; Operon model; Bacterial genome with special reference to E.coli; Phage λ and its life cycle; RNA phages; RNA viruses; Retroviruses; Basic concept of microbial genomics. Microbial Ecology: Microbial interactions; Carbon, sulphur and nitrogen cycles; Soil microorganisms associated with vascular plants Syllabus for Botany (XL: Section J) (Optional Section) Plant Systematics: Systems of classification (non-phylogenetic vs. phylogenetic – outline), plant groups, molecular systematics. Plant Anatomy: Plant cell structure, organization, organelles, cytoskeleton, cell wall and membranes; anatomy of root, stem and leaves, meristems, vascular system, their ontogeny, structure and functions, secondary growth in plants and stellar organization. Morphogenesis & Development: Cell cycle, cell division, life cycle of an angiosperm, pollination, fertilization, embryogenesis, seed formation, seed storage proteins, seed dormancy and germination. Concept of cellular totipotency, clonal propagation; organogenesis and somatic embryogenesis, artificial seed, somaclonal variation, secondary metabolism in plant cell culture, embryo culture, in vitro fertilization. Physiology and Biochemistry: Plant water relations, transport of minerals and solutes, stress physiology, stomatal physiology, signal transduction, N2 metabolism, photosynthesis, photorespiration; respiration, Flowering: photoperiodism and vernalization, biochemical mechanisms involved in flowering; molecular mechanism of senencensce and aging, biosynthesis, mechanism of action and physiological effects of plant growth regulators, structure and function of biomolecules, (proteins, carbohydrates, lipids, nucleic acid), enzyme kinetics. Genetics: Principles of Mendelian inheritance, linkage, recombination, genetic mapping; extrachromosomal inheritance; prokaryotic and eukaryotic genome organization, regulation of gene expression, gene mutation and repair, chromosomal aberrations (numerical and structural), transposons. Plant Breeding and Genetic Modification: Principles, methods – selection, hybridization, heterosis; male sterility, genetic maps and molecular markers, sporophytic and gametophytic self incompability, haploidy, triploidy, somatic cell hybridization, marker-assisted selection, gene transfer methods viz. direct and vector-mediated, plastid transformation, transgenic plants and their application in agriculture, molecular pharming, plantibodies. Economic Botany: A general account of economically and medicinally important plants- cereals, pulses, plants yielding fibers, timber, sugar, beverages, oils, rubber, pigments, dyes, gums, drugs and narcotics. Economic importance of algae, fungi, lichen and bacteria. Plant Pathology: Nature and classification of plant diseases, diseases of important crops caused by fungi, bacteria and viruses, and their control measures, mechanism(s) of pathogenesis and resistance, molecular detection of pathogens; plant-microbe beneficial interactions. Ecology and Environment: Ecosystems – types, dynamics, degradation, ecological succession; food chains and energy flow; vegetation types of the world, pollution and global warming, speciation and extinction, conservation strategies, cryopreservation, phytoremediation. |
#19
21st September 2011, 09:11 PM
|
|||
|
|||
Re: Syllabus of life sciences in GATE
SECTION H. CHEMISTRY (Compulsory)
Atomic structure and periodicity: Planck‘s quantum theory, wave particle duality, uncertainty principle, quantum mechanical model of hydrogen atom; electronic configuration of atoms; periodic table and periodic properties; ionization energy, election affinity, electronegativity, atomic size. Structure and bonding: Ionic and covalent bonding, M.O. and V.B. approaches for diatomic molecules, VSEPR theory and shape of molecules, hybridisation, resonance, dipole moment, structure parameters such as bond length, bond angle and bond energy, hydrogen bonding, van der Waals interactions. Ionic solids, ionic radii, lattice energy (Born-Haber Cycle). s.p. and d Block Elements: Oxides, halides and hydrides of alkali and alkaline earth metals, B, Al, Si, N, P, and S, general characteristics of 3d elements, coordination complexes: valence bond and crystal field theory, color, geometry and magnetic properties. Chemical Equilibria: Colligative properties of solutions, ionic equilibria in solution, solubility product, common ion effect, hydrolysis of salts, pH, buffer and their applications in chemical analysis, equilibrium constants (Kc, Kp and Kx) for homogeneous reactions, Electrochemistry: Conductance, Kohlrausch law, Half Cell potentials, emf, Nernst equation, galvanic cells, thermodynamic aspects and their applications. Reaction Kinetics: Rate constant, order of reaction, molecularity, activation energy, zero, first and second order kinetics, catalysis and elementary enzyme reactions. Thermodynamics: First law, reversible and irreversible processes, internal energy, enthalpy, Kirchoff‘s equation, heat of reaction, Hess law, heat of formation, Second law, entropy, free energy, and work function. Gibbs-Helmholtz equation, Clausius-Clapeyron equation, free energy change and equilibrium constant, Troutons rule, Third law of thermodynamics. Basis of Organic Reactions Mechanism: Elementary treatment of SN1, SN2, E1 and E2 reactions, Hoffmann and Saytzeff rules, Addition reactions, Markonikoff rule and Kharash effect, Diels-Alder reaction, aromatic electrophilic substitution, orientation effect as exemplified by various functional groups. Identification of functional groups by chemical tests Structure-Reactivity Correlations: Acids and bases, electronic and steric effects, optical and geometrical isomerism, tautomerism, conformers, concept of aromaticity SECTION I. BIOCHEMISTRY Organization of life. Importance of water. Cell structure and organelles. Structure and function of biomolecules: Amino acids, Carbohydrates, Lipids, Proteins and Nucleic acids. Biochemical separation techniques and characterization: ion exchange, size exclusion and affinity chromatography, electrophoresis, UV-visible, fluorescence and Mass spectrometry. Protein structure, folding and function: Myoglobin, Hemoglobin, Lysozyme, Ribonuclease A, Carboxypeptidase and Chymotrypsin. Enzyme kinetics including its regulation and inhibition, Vitamins and Coenzymes. Metabolism and bioenergetics. Generation and utilization of ATP. Metabolic pathways and their regulation: glycolysis, TCA cycle, pentose phosphate pathway, oxidative phosphorylation, gluconeogenesis, glycogen and fatty acid metabolism. Metabolism of Nitrogen containing compounds: nitrogen fixation, amino acids and nucleotides. Photosynthesis: the Calvin cycle. Biological membranes. Transport across membranes. Signal transduction; hormones and neurotransmitters. DNA replication, transcription and translation. Biochemical regulation of gene expression. Recombinant DNA technology and applications: PCR, site directed mutagenesis and DNA-microarray. Immune system. Active and passive immunity. Complement system. Antibody structure, function and diversity. Cells of the immune system: T, B and macrophages. T and B cell activation. Major histocompatibilty complex. T cell receptor. Immunological techniques: Immunodiffusion, immunoelectrophoresis, RIA and ELISA. SECTION J. BOTANY Plant Systematics: Systems of classification (non-phylogenetic vs. phylogenetic -outline), plant groups, molecular systematics. Plant Anatomy: Plant cell structure, organization, organelles, cytoskeleton, cell wall and membranes; anatomy of root, stem and leaves, meristems, vascular system, their ontogeny, structure and functions, secondary growth in plants and stellar organization. Morphogenesis & Development: Cell cycle, cell division, life cycle of an angiosperm, pollination, fertilization, embryogenesis, seed formation, seed storage proteins, seed dormancy and germination. Concept of cellular totipotency, clonal propagation; organogenesis and somatic embryogenesis, artificial seed, somaclonal variation, secondary metabolism in plant cell culture, embryo culture, in vitro fertilization. Physiology and Biochemistry: Plant water relations, transport of minerals and solutes, stress physiology, stomatal physiology, signal transduction, N2 metabolism, photosynthesis, photorespiration; respiration, Flowering: photoperiodism and vernalization, biochemical mechanisms involved in flowering; molecular mechanism of senencensce and aging, biosynthesis, mechanism of action and physiological effects of plant growth regulators, structure and function of biomolecules, (proteins, carbohydrates, lipids, nucleic acid), enzyme kinetics. Genetics: Principles of Mendelian inheritance, linkage, recombination, genetic mapping; extrachromosomal inheritance; prokaryotic and eukaryotic genome organization, regulation of gene expression, gene mutation and repair, chromosomal aberrations (numerical and structural), transposons. Plant Breeding and Genetic Modification: Principles, methods œ selection, hybridization, heterosis; male sterility, genetic maps and molecular markers, sporophytic and gametophytic self incompability, haploidy, triploidy, somatic cell hybridization, marker-assisted selection, gene transfer methods viz. direct and vector-mediated, plastid transformation, transgenic plants and their application in agriculture, molecular pharming, plantibodies. Economic Botany: A general account of economically and medicinally important plants-cereals, pulses, plants yielding fibers, timber, sugar, beverages, oils, rubber, pigments, dyes, gums, drugs and narcotics. Economic importance of algae, fungi, lichen and bacteria. Plant Pathology: Nature and classification of plant diseases, diseases of important crops caused by fungi, bacteria and viruses, and their control measures, mechanism(s) of pathogenesis and resistance, molecular detection of pathogens; plant-microbe beneficial interactions. Ecology and Environment: Ecosystems œ types, dynamics, degradation, ecological succession; food chains and energy flow; vegetation types of the world, pollution and global warming, speciation and extinction, conservation strategies, cryopreservation, phytoremediation. SECTION K. MICROBIOLOGY Historical Perspective: Discovery of microbial world; Landmark discoveries relevant to the field of microbiology; Controversy over spontaneous generation; Role of microorganisms in transformation of organic matter and in the causation of diseases. Methods in Microbiology: Pure culture techniques; Theory and practice of sterilization; Principles of microbial nutrition; Enrichment culture techniques for isolation of microorganisms; Light-, phase contrast-and electron-microscopy. Microbial Taxonomy and Diversity: Bacteria, Archea and their broad classification; Eukaryotic microbes: Yeasts, molds and protozoa; Viruses and their classification; Molecular approaches to microbial taxonomy. Prokaryotic and Eukaryotic Cells: Structure and Function: Prokaryotic Cells: cell walls, cell membranes, mechanisms of solute transport across membranes, Flagella and Pili, Capsules, Cell inclusions like endospores and gas vesicles; Eukaryotic cell organelles: Endoplasmic reticulum, Golgi apparatus, mitochondria and chloroplasts. Microbial Growth: Definition of growth; Growth curve; Mathematical expression of exponential growth phase; Measurement of growth and growth yields; Synchronous growth; Continuous culture; Effect of environmental factors on growth. Control of Micro-organisms: Effect of physical and chemical agents; Evaluation of effectiveness of antimicrobial agents. Microbial Metabolism: Energetics: redox reactions and electron carriers; An overview of metabolism; Glycolysis; Pentose-phosphate pathway; Entner-Doudoroff pathway; Glyoxalate pathway; The citric acid cycle; Fermentation; Aerobic and anaerobic respiration; Chemolithotrophy; Photosynthesis; Calvin cycle; Biosynthetic pathway for fatty acids synthesis; Common regulatory mechanisms in synthesis of amino acids; Regulation of major metabolic pathways. Microbial Diseases and Host Pathogen Interaction: Normal microbiota; Classification of infectious diseases; Reservoirs of infection; Nosocomial infection; Emerging infectious diseases; Mechanism of microbial pathogenicity; Nonspecific defense of host; Antigens and antibodies; Humoral and cell mediated immunity; Vaccines; Immune deficiency; Human diseases caused by viruses, bacteria, and pathogenic fungi. Chemotherapy/Antibiotics: General characteristics of antimicrobial drugs; Antibiotics: Classification, mode of action and resistance; Antifungal and antiviral drugs. Microbial Genetics: Types of mutation; UV and chemical mutagens; Selection of mutants; Ames test for mutagenesis; Bacterial genetic system: transformation, conjugation, transduction, recombination, plasmids, transposons; DNA repair; Regulation of gene expression: repression and induction; Operon model; Bacterial genome with special reference to E.coli; Phage - and its life cycle; RNA phages; RNA viruses; Retroviruses; Basic concept of microbial genomics. Microbial Ecology: Microbial interactions; Carbon, sulphur and nitrogen cycles; Soil microorganisms associated with vascular plants. SECTION L. ZOOLOGY Animal world: Animal diversity, distribution, systematics and classification of animals, phylogenetic relationships. Evolution: Origin and history of life on earth, theories of evolution, natural selection, adaptation, speciation. Genetics: Principles of inheritance, molecular basis of heredity, mutations, cytoplasmic inheritance, linkage and mapping of genes. Biochemistry and Molecular Biology: Nucleic acids, proteins, lipids and carbohydrates; replication, transcription and translation; regulation of gene expression, organization of genome, Kreb‘s cycle, glycolysis, enzyme catalysis, hormones and their actions, vitamins. Cell Biology: Structure of cell, cellular organelles and their structure and function, cell cycle, cell division, chromosomes and chromatin structure. Eukaryotic gene organization and expression (Basic principles of signal transduction). Animal Anatomy and Physiology: Comparative physiology, the respiratory system, circulatory system, digestive system, the nervous system, the excretory system, the endocrine system, the reproductive system, the skeletal system, osmoregulation. Parasitology and Immunology: Nature of parasite, host-parasite relation, protozoan and helminthic parasites, the immune response, cellular and humoral immune response, evolution of the immune system. Development Biology: Embryonic development, cellular differentiation, organogenesis, metamorphosis, genetic basis of development, stem cells. Ecology: The ecosystem, habitats, the food chain, population dynamics, species diversity, zoogerography, biogeochemical cycles, conservation biology. Animal Behaviour: Types of behaviours, courtship, mating and territoriality, instinct, learning and memory, social behaviour across the animal taxa, communication, pheromones, evolution of animal behaviour. |
#22
15th October 2011, 10:06 PM
|
|||
|
|||
Re: Syllabus of life sciences in GATE
Yes you can get admission in M.Tech without appearing in GATE exam.But you are not eligible for NIT`S & IIT`s,you can get good private colleges.....There are several entrance exams conducted by the universities for M.Tech,you can also get an seat under Management quota.There are following colleges in which you can apply :-
- Govt. Engineering college Thiruvananthapuram. - Rajiv Gandhi Institute of Technology,Kottayam. - Model Engineering College. - SHM Engineering College. - TKM Institute Of Technology. GOOD LUCK ................................ |
#25
15th January 2012, 10:40 PM
|
|||
|
|||
Re: Syllabus of life sciences in GATE
you can get the syllabus of GATE of life sciences by log on to www.freshersworld.com.
in this website you can get your syllabus as well as name of books, how to prepare for GATE exam etc and many more about the GATE exam. i think it is the best website for students. you can also get the syllabus of GATE by log on to official website of IIT delhi www.iitd.ac.in. also there is no limitation for appear in this exam.you can appear many times.but the validity of gate score card is only for two years from the year of passing this exam. you can get the application of GATE exam in the regional branches of SYNDICATE bank. |
#26
16th January 2012, 12:05 AM
|
|||
|
|||
Re: Syllabus of life sciences in GATE
Quote:
The following categories of candidates are eligible to appear for GATE 2012: BE/BTech degree holders and those who are in the final year of such programmes. Bachelor's degree holders in Engineering/Technology/Architecture (Post-B.Sc./Post-Diploma) and those who are in the final year of such programmes. Master's degree in Science/Mathematics/ Statistics/Computer Applications or equivalent and those who are in the final year of such programmes. Candidates in the second or higher year of the Four-year Integrated Master's degree programme (Post-B.Sc.) in Engineering/Technology. |
Related Topics: |
||
Thread | Replies | Last Post |
Mtech biotechnology colleges who take GATE life sciences score? | 44 | 29th September 2014 09:26 PM |
Institutes offering Ph.D through a GATE score of 345? Am I eligible to apply for NIT? | 25 | 7th June 2014 06:55 PM |
Life sciences syllabus of IISC bangalore | 17 | 15th January 2014 11:06 AM |
Solution to GATE 2009 paper of Life Science(XL)? | 4 | 7th January 2014 03:04 PM |
|