#1
3rd April 2011, 12:28 PM
|
|||
|
|||
Syllabus of TANCET entrance exam?
Hi could anyone send me the tancet exam syllabus. In detail..?
please reply thanks |
#2
12th April 2011, 09:05 PM
|
|||
|
|||
Re: Syllabus of TANCET entrance exam?
Syllabus of TANCET entrance exam?
Last date for receipt of Application : 27.04.11 Apply online by the using website : http://online.annauniv.edu:9080/tancet2011/ Syllabus : Visit the website : http://www.annauniv.edu/tancet2011/booklet.pdf |
#3
16th April 2011, 01:15 AM
|
|||
|
|||
Re: Syllabus of TANCET entrance exam?
Quote:
i have attached complete syllabus for Tancet exam have a look..... with regards |
#5
21st April 2011, 02:11 AM
|
|||
|
|||
Re: Syllabus of TANCET entrance exam?
For the syllabus of TANCET entrance exam , you can refer the 9-22 pages of the link given below:
http://www.annauniv.edu/tancet2011/booklet.pdf |
#6
30th April 2011, 09:09 PM
|
|||
|
|||
Re: Syllabus of TANCET entrance exam?
SYLLABI FOR THE ENTRANCE TEST
PART I ENGINEERING MATHEMATICS (Common to all Candidates) i) Determinants and Matrices : Solving system of equations Rank of the Matrix Eigenvalues and eigenvectors Reduction of quadratic form to canonical form. ii) Calculus and Differential Equations : Partial derivatives Jacobians Taylors expansion Maxima and Minima. Linear ordinary differential equations with constant coefficients Simultaneous first order linear equations with constant coefficients. Formation of partial differential equation (PDE) Solution of first order PDE Solution of linear higher order PDE with constant coefficients. iii) Vector Calculus : Double and triple integrations and their applications Gradient, Divergence, Curl and Laplacian Greens, Gauss divergence and Strokes theorem. iv) Functions of Complex Variables and Complex Integration : Analytic functions Conformal Mapping Bilinear transformation Cauchys integral theorem and integral formula Taylor and Laurent Series Singularities Residues Residue theorem and its applications. v) Transforms : Laplace Transform Inverse transforms Application to solution of linear ordinary differential equations with constant coefficients. Fourier integral theorem Fourier transform pair Sine and Cosine transforms. -transform Inverse Ztransform Solution of difference equations using Z transform. vi) Numerical Methods : Solution of linear system by direct and iterative methods Interpolation and approximation Numerical Differentiation and Integration Solving Ordinary Differential Equations. vii) Applied Probability : Probability and Random variables Standard Discrete and Continuous distribution Moments Moment generating function and their properties. Two-Dimensional Random Variables Covariance Correlation and Regression. PART II BASIC ENGINEERING & SCIENCES (Common to all Candidates) i) Applied Mechanics : Law of Mechanics Lames theorem Forces, Moments and Couples Displacement, velocity and Acceleration Friction Moment of Inertia. ii) Mechanical Engineering : Laws of thermodynamics Open and closed systems Equation of state Heat and Work. iii) Physics : Sound Latices Ultrasonic flaw detector X-ray radiography Interference Fringes Plancks quantum theory Laser and Fibre Optics. iv) Material Science : Fracture Magnetic and Dielectric materials Conductor and Semi conductor materials Ceramic and Super conductor materials. v) Civil Engineering : Fluid Statics and Dynamics Boundary Layer Pumps and Turbines Environmental Pollution. vi) Electrical Engineering : Ohms law Kirchoffs law A.C. circuits D.C. machines Transformers Synchronous machines Instrumentation. vii) Computers : Computer organisation Architecture Arrays Pointers User defined function C program. viii) Chemistry : Adsorption Chromatography Chemical kinetics Electrochemistry Spectroscopy Fuels and Combustion. For detailed information, visit: TANCET BOOKLET |
#7
1st May 2011, 12:58 AM
|
|||
|
|||
Re: Syllabus of TANCET entrance exam?
Hi dear,
the detail syllabus is here................... PART I ENGINEERING MATHEMATICS (Common to all Candidates) i) Determinants and Matrices : Solving system of equations Rank of the Matrix Eigenvalues and eigenvectors Reduction of quadratic form to canonical form. ii) Calculus and Differential Equations : Partial derivatives Jacobians Taylors expansion - Maxima and Minima. Linear ordinary differential equations with constant coefficients Simultaneous first order linear equations with constant coefficients. Formation of partial differential equation (PDE) - Solution of first order PDE Solution of linear higher order PDE with constant coefficients. iii) Vector Calculus : Double and triple integrations and their applications Gradient, Divergence, Curl and Laplacian Greens, Gauss divergence and Strokes theorem. iv) Functions of Complex Variables and Complex Integration : Analytic functions Conformal Mapping Bilinear transformation Cauchys integral theorem and integral formula Taylor and Laurent Series Singularities Residues Residue theorem and its applications. v) Transforms : Laplace Transform Inverse transforms Application to solution of linear ordinary differential equations with constant coefficients. Fourier integral theorem Fourier transform pair Sine and Cosine transforms. -transform Inverse Z-transform Solution of difference equations using Z- transform. vi) Numerical Methods : Solution of linear system by direct and iterative methods Interpolation and approximation Numerical Differentiation and Integration Solving Ordinary Differential Equations. vii) Applied Probability : Probability and Random variables Standard Discrete and Continuous distribution Moments Moment generating function and their properties. Two-Dimensional Random Variables Covariance Correlation and Regression. PART II BASIC ENGINEERING & SCIENCES (Common to all Candidates) i) Applied Mechanics : Law of Mechanics Lames theorem Forces, Moments and Couples - Displacement, velocity and Acceleration Friction Moment of Inertia. ii) Mechanical Engineering : Laws of thermodynamics Open and closed systems Equation of state - Heat and Work. iii) Physics : Sound Latices Ultrasonic flaw detector X-ray radiography Interference Fringes - Plancks quantum theory Laser and Fibre Optics. iv) Material Science : Fracture Magnetic and Dielectric materials Conductor and Semi conductor materials Ceramic and Super conductor materials. v) Civil Engineering : Fluid Statics and Dynamics Boundary Layer Pumps and Turbines - Environmental Pollution. vi) Electrical Engineering : Ohms law Kirchoffs law A.C. circuits D.C. machines Transformers - Synchronous machines Instrumentation. vii) Computers : Computer organization Architecture Arrays Pointers User defined function - C program. iii) Chemistry : Adsorption Chromatography Chemical kinetics Electrochemistry Spectroscopy -Fuels and Combustion. PART III 1. CIVIL ENGINEERING & GEO INFORMATICS i) Structural Engineering Division : Mechanics: Stress-Strain Relationships Principal stresses and Principal strain in two dimension and three dimension. Composite Bars Composite Beams Elastic Constants. Beams and Bending Shear Force and Bending Moment Diagrams Flexural and Shear Stresses. Slope and Deflection of Beams. Thin and Thick Cylinders. Torsion. Theories of Failure - Unsymmetrical Bending Curved Beams Theories of Columns. Combined Direct and Bending Stresses. Structural Analysis: Static and Kinematic Indeterminancy Energy Principles Deflection of pin jointed plane frames rigid frames. Classical Method of Analysis of indeterminate structures (Slope deflection and Moment Distribution) Matrix Method. Arches and Suspension Bridges Influence Line for Determinate and Indeterminate Structures. Plastic Analysis of Structures. Building Materials: Cement Concrete properties of ingredients- Mix Design- Quality Control- Special Concrete Concreting Methods- Brick Brick Masonry Stone Timber Steel. Concrete Structures: Design Methods Limit State Design for beams, slabs, columns and footings - retaining walls Water Tanks. Prestressed Concrete Principles Methods Losses Deflection - Design. Steel Structures: Steel Sections Connections Design of Tension and Compression Members Beams, Column Bases Plate Girders and Trusses. ii) Soil Mechanics And Foundation Engineering : Soil Mechanics: Nature of soil phase relationships Soil classification; Soil water static pressure effective stress principle; permeability - seepage; Stress distribution in soil Consolidation (Terzaghis one dimension consolidation theory); Compaction shear strength of soil Mohr Coulomb theory determination of shear strength by different methods; Slope stability analysis protection measures. Foundation Engineering: Site investigation scope and objectives drilling techniques depth and spacing of boreholes sampling Techniques penetration tests (SPT and SCPT) plate load test -selection of foundation; Foundation types shallow foundation bearing capacity (Terzaghis Theory and BIS formula) allowable bearing pressure bearing capacity from field tests settlement of foundation -allowable settlement Codal provisions; Design of foundations Isolated, combined and raft foundation; Pile foundations static and dynamic pile driving formulae (Engineering News and Hiley method) Pile groups capacity and settlement Codal provisions pile load test negative friction on piles; Earth pressure theories Earth pressure on retaining walls stability analysis of retaining wall. iii) Transportation Engineering : Highway Planning: Road Classification, Geometric Design of Highways, Construction of Earth, WBM, Bituminous and concrete roads, Design of flexible and rigid pavements. Drainage of roads, maintenance of roads. Railways, Airways, Docks and Harbour Planning: Railway alignment, components of permanent way, geometric design Airport planning, components of airport, site selection, planning for terminal building, runways. Harbour planning, components of harbour, inland water transport. Traffic Engineering: Traffic characteristics, Traffic surveys, Traffic Signals, Road markings and signs. iv) Water Resources Engineering : Fluid Mechanics and Hydraulics: Properties of fluids. Fluid statics and relative equilibrium. Basic concepts of fluid flow kinematics and dynamics. Concept of system and control volume application to continuity, momentum and energy equations. Dimensional analysis and model studies. Laminar and turbulent flow through pipes. Boundary layers. Steady uniform and gradually varied flow in open channels. Rapidly varied flows. Turbines and pumps and positive displacement pumps. Hydrology and Ground Water: Hydrometeorology. Hydrologic cycle. Precipitation and its measurements. Abstractions. Runoff estimation. Hydrograph analysis. Unit Hydrograph. Hydrologic extremes floods and droughts. Rainwater harvesting. Properties of aquifer. Groundwater development. GEC norms. Well hydraulics. Steady and unsteady flows. Ground water quality. Irrigation Engineering: Irrigation system. National water policy. Components of irrigation network. Design of lined and unlined channels. Waterways, head works, gravity dams and spillways. Design of weirs on permeable foundation. Soil water relations. Crop water requirements. Irrigation scheduling and methods. Duty, delta and base period. Irrigation water quality. Irrigation water management. Participatory approach. v) Environmental Engineering : Water and Waste water Engineering: Water requirements; water demand, quality standards; Development of water supply source, conveyance system; basic unit processes and operations for water treatment; water distribution; sewage characteristics; sewage treatment, primary and secondary treatment of sewage, sludge disposal, sewage disposal. Air Pollution and Control: Types of pollutants, their sources and impacts, air pollution meteorology, air pollution control, air quality standards and limits. Noise Pollution and Control: Impacts of noise, permissible limits of noise pollution, measurement of noise and control of noise pollution. vi) Surveying And Remote Sensing : Surveying: Chain survey-traversing-plotting: compasses- bearings -plane table-leveling-bench marks-temporary and permanent adjustments-reduction: contouring and volumes-theodolites Gales table-lay out setting out works-curve ranging-mine surveying- techeometric survey-triangulation-base line-corrections-trigonometric leveling errors and sources- classification of errors-equation-level nets-astronomical survey-practical astronomy-photogrammetry- EDM-hydrographic survey-river. Electronic survey- infrared EDM-microwave system-modern positioning systems trilateration. Remote Sensing: Satellite system- EMR interaction with each feature, spectral signature image characters -interpretation keys- Image enhancement, filters, classification.-accuracy assessment-thematic maps. GIS and Cartography: Cartography-map projection-map design-map compilation-generalization-map production- software and hardware GIS-data types-data base types-raster and vector-topology-data input-data analysis-DEM and TIN-data output-applications. 2. EARTH SCIENCES i) Physical Geology and Geomorphology : Weathering process, kinds, products. Internal structure of the earth, fundamentals of plate tectonics. Landforms produced by River, winds, glacier and sea. Drainage pattern, Drainage Index , geomorphic features. ii) Mineralogy, Petrology, Stratigraphy, Paleontology and Structural Geology : Physical properties of Industrial minerals classification, origin and description of Igneous, sedimentary and Metamorphic rocks. Origin of Himalayas major earth geological events through time scale. Origin of life, types of fossils evolution of mammals & Man. Joints, Folds, Faults and structures. iii) Economic Geology, Ore Geology, Geochemistry : Origin, occurrence and distribution of Economic mineral deposits-Iron, manganese, gold, zinc, graphite, lead, coal and petroleum deposits. Ore-dressing, ore-reserves, estimation. Major elements, application in environmental studies REE-its implication in genesis/ provenance of rocks. iv) Remote Sensing, Geophysics and Hydrogeology : Sensors & Platforms- Indian Remote Sensing - Spectral system characterizes of rocks & minerals Photogeology Photogrametry Hydrogeology - Groundwater occurrence, movement, Aquifer, field parameters & Lab methods of estimations. v) Engineering Geology, Environment Geology and Marine Geology : Engineering properties of Rock. Geological investigation required for Dam, Tunnel, highways and building constructions. Renewable and non-renewable resources, pollution. Continental and marine environmental studies. Ocean features, physical, chemical & biological resources of the ocean. 3. MECHANICAL, AUTOMOBILE & AERONAUTICAL ENGINEERING i) Mechanics : Statics of Particles, Equilibrium of Rigid Bodies, Properties of Surfaces and Solids, Dynamics of Particles, Friction and Elements of Rigid Body Dynamics Basics of Mechanisms, Kinematics of Linkage Mechanisms, Kinematics of Cam Mechanisms, Gears and Gear Trains, Friction, Force Analysis, Balancing and Vibration. ii) Strength of Materials and Design : Stress, Strain and Deformation of Solids, Transverse Loading on Beams and Stresses in Beams, Deflection of Beams, Energy Principles, Thin cylinders and spherical resells Torsion - Fundamentals of Design for Strength and Stiffness of Machine Members, Design of Shafts and Couplings, Design of Fasteners and Welded Joints, Design of Springs and Engine Parts, Design of Engine parts, Bearings and Flywheels, Design of Transmission Systems for Flexible Elements, Spur Gears and Parallel Axis Helical Gears, Bevel, Worm Gears and Crossed Helical Gears, Design of Gear Boxes, Design of Cam, Clutches and Brakes. iii) Material Science and Metallurgy : Constitution of Alloys and Phase Diagrams, Heat Treatment, Ferrous and Non ferrous Metals, Non-Metallic Materials, Mechanical Properties and Testing, Crystal Defects and Strengthening of Materials Conducting and Semiconducting Materials, Magnetic and Dielectric Materials, Nuclear Physics, Superconducting and New Engineering Materials. iv) Thermodynamics : Basic Concepts and First Law, Second Law, Entropy and Availability, Properties of Steam, Psychrometry, Ideal and Real Gases and Thermodynamic Relations, Fuels and Combustion, Gas Power Cycles, Stream Turbines, Internal Combustion Engines, Internal Combustion Engines Testing and Performance, Gas Turbines, Steam Nozzle, Air Compressor, Refrigeration and Air-Conditioning, Boilers, Cogeneration and Waste Heat Recovery. v) Heat Transfer : Conduction, Phase Change Heat Transfer and Heat Exchangers, Radiation, Mass Transfer- Refrigeration Cycle, Refrigerants, System Components and Balancing, Psychrometry, Air Conditioning Systems, Unconventional Refrigeration Cycles. vi) Production Technology : Foundry Technology, Hot & Cold Working, Forging, Advances in Forming Process, Principles and Applications of Joining Processes, Theory of Metal Cutting, Centre Lathe and special Purpose Lathes, Reciprocating Machines, Milling Machines and Gear Cutting, Abrasive Process, Broaching, CNC Machine Tools and Part Programming. vii) Automotive Engines : Engine Construction and Operation, SI Engine Fuel System, Cooling and Lubrication System, Combustion and Combustion Chambers, Two Stroke Engines, Diesel Engine Basic Theory, Fuel Injection System, Air Motion, Combustion and Combustion Chambers, Supercharging and Turbocharging, Diesel Engine Testing and Performance. viii) Automotive Transmission and Pollution : Clutch and Gear Box, Hydrodynamic Drive, Planetary Gear Boxes, Automatic Transmission Applications, Hydrostatic and Electric Drive S.I. Engine Combustion and Emissions, CI Engine Combustion and Emissions, Control Techniques for Reduction of SI and CI Engine Emission, Test Procedure & Instrumentation for Emission Measurement and Emission Standards. ix) Aerodynamics : Basic Fluid Mechanics, Two Dimensional Inviscid Incompressible Flow, Airfoil Theory, Subsonic Wing Theory, Laminar and Turbulent Flow, Fundamental Aspects of Compressible Flow, Shock and Expansion Waves, Two Dimensional compressible Flow, High Speed Flow Over Airfoils, Wings and Airplane Configuration. x) Aerospace Propulsion : Fundamentals of Gas Turbine Engines, Subsonic and Supersonic Inlets for Jet Engines, Centrifugal and Axial Flow Compressors, Combustion Chambers for Jet Engines, Turbines for Jet Engines, Nozzles for Jet Engines, Ramjet Propulsion, Hypersonic Airbreathing Propulsion, Chemical Rocket Propulsion, Advanced Propulsion Techniques. 4. ELECTRICAL & ELECTRONICS ENGINEERING AND INSTRUMENTATION ENGINEERING i) Electrical Circuits and Fields : KCL, KVL, Nodal & Mesh analysis, transient response of D.C and A.C networks; sinusoidal steady-state analysis; resonance in electrical circuits; concepts of ideal voltage and current sources, network theorems, driving point admittance and transfer functions of two port network, three phase circuits; Fourier series and its application; Gauss theorem, electric field intensity and potential due to point, line, plane and spherical charge distribution, dielectric, capacitance calculations for simple configurations; Amperes and Biot-Savarts law, inductance calculations for simple configurations. ii) Electrical machines : Single phase transformer-equivalent circuit, phasor diagram, tests, regulation and efficiency; three phase transformer-connections; auto transformer; principles of energy conversion, windings of rotating machines: D.C generators and motors-characteristics, starting and speed control, armature reaction and commutation; three phase induction motors-performance characteristics, starting and speed control; single-phase induction motors; synchronous generators- performance, regulation; synchronous motors-starting characteristics, applications, synchronous condensers; fractional horse power motors; permanent magnet and stepper motors. iii) Power Systems : Electric power generation thermal, hydro, nuclear; transmission line parameters; steady-state performance of overhead transmission lines and cables and surge propagation; distribution system, insulators, bundle conductors, corona and radio interferences effects; per-unit quantities; bus admittance and impedence matrices; load flow; voltage control and power factor correction; economic operation; symmetrical components, analysis of symmetrical and unsymmetrical faults; principle of over current, differential and distance protections; concepts and solid state relays and digital protection; circuit breakers; principles of system stability-swing curves and equal area criterion. 12 iv) Control systems : Principles of feedback; transfer function; block diagram; steady-state errors; stability-Routh and Nyquist criteria; Bode plots; compensation; root loci; elementary state variable formulation; state transition matrix and response for Linear time Invariant systems. v) Power Electronics and Drives : Semiconductor power devices-diodes, transistors, thyristors, triacs, GTO, MOSFETs and IGBTs-static characteristic and principles of operation; triggering circuits; phase control rectifiers; bridge converters-fully controlled and half controlled; principles of choppers and inverters, basic concepts of adjustable speed dc and ac drives. vi) Digital Electronics : Digital Logic Theory: Number systems-Combinational logic circuits-Minimization of Boolean functions-IC families-Arithmetic circuits, Multiplexer & decoders-Sequential circuits-Flip flops, counters, shift registers, Schmitt trigger, timers and multivibrators. Microprocessor : General 8 bit microprocessor Architcture-8085, 8086 processor Architecture, Memory, I/O interfacing, Instruction set, Addressing modes, Timing diagram & delays, Machine cycles, Interrupts, counters, Assembly language programming. Microcontrollers: 8 bit microcontroller 8051 architecture, bus configuration, Instruction sets, programming & applications. vii) Digital Signal Processing : Analog signals-sampling & Aliasing-Discrete time signals & systems- LTI systems- Convolution sum-Difference equation representation-Z Transform & its Inverse-Discrete Fourier series & Fourier transform-Radix 2 FFT Decimation in me and frequency- Inverse DFT using FFT-Analog Butterworth & Chebyshev filter design-IIR & FIR filter design and Realization. viii) Computer Control of Processes, Networks : State models and state equations-controllability & observability-pole assignment-discrete data system state space representation-stability-data hold, Z & modified Z transform Pulse transfer function-programmable logic controllers. Data networks-switching OSI, Data link control, Media access protocol-BISYNC, SDLC, HDLC, CSMA/CD, TCP/IPBridges, routers, gateways, Ethernet and Arcnet configuration. ix) Communication Engineering : Modulation and demodulation systems Types of transmission lines losses standing waves Ground wave and space wave propagation Digital communication concepts Data Communication codes, serial and parallel interface Network protocol Types of satellites Advantages of optical fibre communication. x) Measurements, Instrumentation and Transducers : Measurement of R, L and C-Bridges, potentiometers & galvanometers- Measurement of voltage, current, power, power factor and energy- Instrument transformers, Q meter, Waveform Analyzers Digital voltmeter, multimeter-Time, phase and frequency measurements-Oscilloscope display and recording devices Noise and interference in Instrumentation. xi) Industrial Instrumentation : Measurement of displacement, stress, strain, force, torque, velocity, Acceleration, Shock, vibration, humidity, viscosity & density- Pressure, temperature, flow & level measurement. xii) Analytical Instrumentation : Spectro Photometers-Spectral methods of analysis-source detectors and applications Ion conductivity-sampling systems, ion selective electrodes, conductivity and pH meters- Analyzers Chromatography NMR & X ray spectroscopy GM and proportional counters- Mass spectrometer. Units and standards-Calibration methods-Errors-Transducer classification, static characteristics, mathematical mode, zero, I and II order transducers Response to different inputs-variable Resistance, Inductance and capacitance transducers-Piezo electric, Magnetostrictive, IC and smart sensors- Digital, Fibre optic, Hall effect and feedback transducers. 5. ELECTRONICS AND COMMUNICATION ENGINEERING I. Circuit Analysis: DC Circuit analysis, Thevenins and Nortons equivalent circuits, Sinusoidal steady state analysis, Transient and resonance in RLC circuits. Electronic Devices: Diodes, Bipolar Junction Transistors, FET, MOSFET, UJT, Thyristor. Electronic Circuits: Small signal amplifiers using BJT and FET devices, Large signal amplifiers, Power supplies, Feed back amplifiers, Oscillators, Pulse shaping circuits. Digital Electronics: Logic gates, Combinational circuits, Sequential circuits. Linear Integrated Circuits: Operational amplifiers and its applications, PLL, Voltage regulators, A/D and D/A converters. Measurements and Instrumentation: Transducers, Digital Instruments, Display and Recording systems. Microprocessor and its applications: Microprocessors-8085 and 8086 architectures and interfaces, Micro-controller and applications. Electromagnetic Fields: Static Electric and Magnetic fields, Time varying Electric and Magnetic fields, Maxwell equations. Transmission Lines and Networks: Transmission line equations, impedance matching, Filters. EM waves and waveguides: Guided waves, Rectangular and cylindrical waveguides. Antennas and Propagation: Aperture antennas, arrays, Propagation of radio waves. Microwave Engineering: Microwave tubes, semiconductor devices, Passive components, Microwave measurements. Communication Theory and Systems: AM, FM and PM, Sampling and Quantization, PCM, DM, ADM, Multiplexing. Digital Communication: Base band signaling, Band pass signaling, Error control coding, Spread spectrum techniques. Computer Communication Networks: Definition of layers, data link protocols, Network interconnection. Message routing technologies, End-End protocols. Optical Communication: Optical Fibers, optical transmitters and receivers. Signals and Systems: Continuous time signals and systems-Fourier Transform, Laplace transform, Discrete time signals and systems-DTFT, DFT, Z-Transform. Digital Signal Processing: IIR and FIR filters, Realization and implementation, Quantization effects. Control Systems: Transfer function, Time and frequency response analysis, Stability analysis, state variable analysis 6. PRODUCTION AND INDUSTRIAL ENGINEERING i) Basic Mechanisms and Elements of Design : Mechanisms, Friction, Gearing and Cams, Balancing, Vibration, Fundamentals of Design, Design of Basic Machine Elements, Design of Mechanical drives, Design of Automotive components, Recent Advances. ii) Casting, metal forming and metal joining processes : Casting Processes, Welding Processes, Special Casting Processes, Testing of Castings & Weldments Fundamentals of Metal Forming, Forging and Rolling, Extrusion and Drawing Processes, Sheet Metal Forming Processes, Recent Advances, Mechanisms, Friction, Gearing and Cams, Balancing, Vibration, Fundamentals of Design, Design of Basic Machine Elements, Design of Mechanical drives, Design of Automotive components, Recent Advances. iii) Tool Engineering, Machine tool operation, Metrology and Inspection : Mechanics of Metal Cutting, Tool Material, Tool Wear and Tool Life, Gear Manufacture, Concept & Programming of CNC machines, Advanced CNC programming & Tooling General Concepts of measurements, Linear and Angular measurements, Measurement of Surface Finish Measuring Machines, Metrology of Screw Thread & Gears, Computer Aided Inspection and Laser Metrology Strength and rigidity of machine tool structures, Slideways, Spindles and spindle supports, Machine Tool Dynamics. iv) Engineering Materials, and Computer Aided Manufacturing : Introduction and Constitution of Alloys and Phase Diagrams, Heat Treatment, Ferrous and Non Ferrous Metals, Mechanical Properties and Testing, Welding and Foundry Metallurgy, Manufacturing Processes for Plastic, Mechanical, Chemical and Electro-chemical energy based processes, Electrical Energy based Waste Processes, Thermal Energy Process, Rapid Prototyping and Rapid Tooling polymer Matrix Composites, Metal Matrix Composites, Ceramics Matrix Composites, Advances in Polymers & Composites. v) Product and Process Design, Design of Jigs and Fixtures and Press Tools : Computer Aided Design, Computer Graphics Geometric Modelling, Product Design Concepts, Recent Advances, Process Planning, Estimating, Costing and Elements of Cost, Analysis of Overhead Expenses, Estimation of Costs for Forging, Casting and Welding, Estimation of Machining Time, Purpose Types and Functions Of Jigs and Fixtures, Jigs, Fixtures, Press working Terminologies and Elements of dies and Strip Layout, Design and Development of Dies. vi) Operations Research : Linear Programming, LP Extensions, Networks, Inventory Models, Dynamic Programming, Decision Analysis, Game Theory, Waiting Line Models, Markov Processes. vii) Operations Management : Forecasting, Aggregate Planning, Capacity Management, Production Activity Control, Estimation and Costing, Product Cost Estimation, Software Cost Estimation, Costing Methods, Cost Analysis for Planning and Control. viii) Quality Control Reliability and Maintenance : Quality Concepts, Statistical Process Control, Process Capability Analysis, Advanced Control Charts, Acceptance Sampling, Reliability Concepts, Failure Data Modeling, Reliability Prediction and Modeling, Reliability Management, Risk Assessment, Maintenance Concept, Maintenance Models, Maintenance Logistics, Total Production Maintenance, Fault Diagnosis. 7. COMPUTER SCIENCE AND ENGINEERING AND INFORMATION TECHNOLOGY i) Applied Probability And Operations Research : Random Processes, Probability Distributions, Queuing Models and Simulation, Testing of Hypothesis, Design of Experiments. ii) Discrete Mathematical Structures : Formal Language and Automata Graph Theory. iii) Compiler Design : Optimization Code Generation Implementation Principles of Programming Languages Programming Paradigms. iv) Operating Systems And System Software : Process Management, Storage Management, I/O Systems, Design and Implementation of LINUX OS, assemblers, Loaders, Linkers, Macro Processors. v) Distributed Systems : Communication and Distributed Environment, Distributed Operating Systems, Distributed Shared Memory, Protocols, Fault Tolerance and Distributed File Systems, Distributed Object Based Systems. vi) Programming And Data Structures : Problem Solving Techniques, Trees, Hashing and Priority Queues, Sorting, Graph, Heap Search. vii) Algorithm Analysis And Design Techniques : Dynamic Programming, Greedy Algorithms, Advanced Algorithms, NP Completeness and Approximation Algorithms. viii) Microprocessors And Microcontrollers Computer Architecture And Organization : Digital Fundamentals, Combinational Circuits, Synchronous and Asynchronous Sequential Circuits, Instruction Set Architecture(RISC,CISC,ALU Design), Instruction Level Parallelism, Processing Unit and Pipelining, Memory Organization. ix) Digital Signal Processing : FFT, Filter Design. x) Computer Networks : Data Communication Systems, Applications. xi) Database Management Systems : Relational Model, Database Design, Implementation Techniques, Distributed Databases, Object Oriented Databases, Object Relational Databases, Data Mining and Data Warehousing. xii) Software Engineering Methodologies : Software Product and Processes Software Requirements Management Requirement Engineering, Elicitation, Analysis, Requirements Development and Validation, Requirements Testing Object Oriented Analysis And Design Modular Design, Architectural Design, User Interface Design, Real Time Software Design, System Design, Data acquisition System Software Testing And Quality Assurance SQA Fundamentals, Quality Standards, Quality Metrics, Software Testing Principles, Defects, Test Case Design Strategies, Software Quality and reusability, Software Project Management, Software Cost Estimation, Function Point Models, Software Configuration Management, Software Maintenance. xiii) Artificial Intelligence : Intelligent Agents, Search Strategies, Knowledge Representation, Learning, Applications. xiv) Mobile Computing : Wireless Communication Fundamentals, Telecommunication Systems, Wireless Networks. xv) Security In Computing : Program Security, Security in Operating Systems, Database and Network Security, Scientific Computing, Information Coding Techniques, Cryptography, Network Security. 8. CHEMICAL ENGINEERING, CERAMIC TECHNOLOGY AND BIOTECHNOLOGY i) Fluid Mechanics and Particle Technology : Classification of fluids, flow patterns, manometry, continuity equation, Navier-Stokes equation, Bernoulli equation, Dimensional analysis, Flow through pipes, Boundary layer concepts, Flow through fixed and fluidized beds, pumps classification affinity laws, performance curves. Characteristics of solids, size analysis, Screening, Storage, Conveyance, Size reduction, Classifier, Centrifuges, Cyclones. Filtration, Mixing and agitation. ii) Chemical Technology and Process Calculations : Gas calculations, Material balance and Energy balance Steady and unsteady state, Humidity and Saturation, Combustion, Thermo chemistry, Role of Chemical Engineers in process industry, Cement, glass and ceramic industries, paper industry- Oil, soap, detergent industries, petroleum refining and petrochemicals- Polymer industry, Fertilizers, Food industry and other important process industries. iii) Thermodynamics and Kinetics : Laws of thermodynamics, PVT behavior of fluids, Thermodynamic formulations, compression of fluids, Phase equilibria Application of the correlation and prediction. Free energy change and reaction equilibria. Refrigeration principles, performance. Reaction rate laws, theories, analysis. Design of reactors, Factors affecting design, Thermal reactors and rates of heat exchanges. Non-ideal reactors, Hetrogenous reactors and solid catalysts, Gas- solid catalytic reactors, Gas- solid non-catalytic reactors, Gas-Liquid reactors. iv) Heat and Mass transfer : Modes of Heat transfer. Heat conduction- steady and unsteady state, Natural and forced convection, Heat transfer to fluids with phase change, heat transfer coefficients, evaporation, heat exchangers design and construction. Diffusion, Mass transfer coefficients, humidification, drying, absorption, distillation, extraction, leaching, crystallization, adsorption and ion exchange, analogies. v) Process Control and Computer Applications in Chemical Engineering : Open loop systems, closed loop systems, Frequency response, Advanced control systems, Instrumentation. Application of spread sheet packages in Chemical engineering, Process flow sheeting, Development of software for design of equipments. Dynamic programming in Chemical engineering. vi) Organic and Surface Chemistry : Carbohydrates, Oils, Fats, and Waxes, Heterocyclic compounds, proteins, dyes and dyeing, pharmaceutical chemistry. Adsorption types, adsorption of gases over solids, isotherms, applications, ion exchange, adsorption chromatography, Catalysis types, Equations. vii) Electro, Polymer and Corrosion Chemistry : Factors influencing Corrosion, types of corrosion, corrosion control. Laws of migration of ions, conductometric titrations, advantages, galvanic cells, reversible and irreversible cells, Standard electrodes, electrode potentials, electrochemical series, Nernst equation. Polymeric materials, Teflon, polyamide, Nylon66, Kevlar, polyesters, polyethylene teryphthalate, poly butylene tetra phthalate, polycarbonates, bakelite, reinforcement, composites. Introduction to spectroscopic analysis, Molecular spectroscopy, IR, NMR, Mass Spectrometry. viii) Environmental Pollution and Control : Various methods of reduction of pollution, types of pollution, Air pollution sources and effects- control techniques, Water pollution sources and effects- control techniques, Soil pollution sources and effects- control techniques and Solid waste disposal. ix) Bioprocess Engineering : Analysis of STR, Analysis of other configurations, Bioreactor scale-up, Modeling and simulation of Bioprocesses, Bioreactor considerations in Enzyme systems. x) Cell and Molecular biology : Cells, Cell lines, Cell culture, Cell Organelles and its functions, types of Cell divisions, cell cycle and its regulation mechanism. Transport Mechanism (passive, Active, ATPase pumps and Na+ /K+ pumps), Receptors, Signal Transduction, Models of Signal Amplification Secondary messengers, Structure of Nucleic Acids, Replication, Transcription, Translation and DNA repair mechanism in Prokaryotes and Eukaryotes. Promoters, Enhancers and Transcription factors. Genetic Codes and Lac & trp operons. xi) Biochemistry and Microbiology : Structure, function and metabolism of Carbohydrates, lipids Nucleic Acids and proteins. Enzymes and its mechanism. Electron Transport Chain system, High energy compound and reducing equivalents. History of Microbiology, Classification of Microorganism, structural organization and multiplication of Microorganism. Physical and Chemical control of Microorganisms, Primary and Secondary metabolites and their applications. xii) Genetic Engineering : Genes, control of gene expression, Restriction enzymes, Vectors (prokaryotic and Eukaryotic) construction of cDNA and genomic Library. Screening of DNA libraries, PCR, RACE PCR, RAPD, RFLP, AFLP, Site directed mutagenesis, Methods of Nucleic acid sequencing. Cloning vectors in plants, Transgenic and Knockout animals. xiii) Immunology : Immune system, immunity, lymphoid organs, antigens, adjutants, types of immune response. Activation and different ion of T-cells and B-Cells, Antibodies, Genes and generation of diversity, monoclonal antibodies. MHC APC, regulation of T-cell and B-cell responses. Immunity to viruses, Bacteria fungi and parasites, cytokines, complements, immunosuppression, allergy and hypersensitivity. Vaccines, Transplantation, Tumor Immunology, Autoimmunity and Autoimmune disorders. xiv) Bioinformatics : Search engines and algorithms, data management, data technology, biological databases and their uses. Pair wise sequence alignment (local and global), multiple sequence alignment, dot matrix, dynamic programming and Bayesian methods. BLAST, FASTA, machine learning and Hidden Markov models. Phylogenetic tree analysis. Bimolecular and cellular computing, microarray analysis and system Biology. xv) White wares, ceramic processing and fine ceramics : Quarrying of ceramic materials, size reduction, mechanical separation, mixing and conveying, powder characterization, Classification of whiteware products, heavy clayware, tests and quality control. xvi) Glass, Cement, Refractory and Ceramic coatings : Formation and Structure of glass, preparation of glass batch, glass melting process, Special glasses, annealing, different types of refractories, different types of cement, concrete, properties of cement and concrete. for more detail go through this link http://entrance.icbse.com/tancet/syllabus/ Thanks |
|