#51  
3rd July 2011, 04:30 PM
Unregistered
Guest
 
Posts: n/a
Default Re: ISRO space engineering entrance exam syllabus after 12th

When will the application forms for ISAT 2012 available online?????
Reply With Quote

Related Questions:
  1. ISRO space engineering entrance exam syllabus after 12th?
  2. Which is the new entrance exam by isro for space engineering??
  3. Which entrance exams do I have to answer to opt for space engineering course? Details about Syllabus, qualifications and exam centers?
  4. How may I get recruited in ISRO? Is there any entrance exam for the same? What's the eligibility criteria and syllabus for this entrance exam? I am pursuing B.Sc in physics from St. Xaviers college, Palayamkottai
  5. ISRO after finishing diploma in Mechanical engineering?
  6. Application for ISRO's space engineering entrance exam?
  7. How to study for space engineering under ISRO institution after passing 12th?
  8. How to make a career in space research after completing 12th exam? What are the jobs available in ISRO? Which entrance exam should I give in this field?
  9. Syllabus of ISRO entrance exam in computer science? Requirements for a computer engineering to get a job in ISRO?
  10. ISRO Placement Exam - Download Previous Years Question Papers
  11. Which are the entrance exams which can be answered after completion of Telecommunication Engineering so that I can take up space science? Syllabus of the entrance exam?
  12. How to Get Into ISRO?
  13. Syllabus for ISRO entrance exam for engineers -- [Most Discussed]
  14. How to apply for ISRO after 12th? How many courses are there in ISRO related to Space studies?
  15. How to become a space engineer for ISRO or NASA? -- [New]
  16. Syllabus of the entrance test for M.Tech in Astronomy and Space Engineering, Manipal University?
  17. Can I join ISRO after 12th? Date of entrance exam?
  18. What is ISRO entrance exam date? What is the syllabus for electrical engineering?
  #52  
29th August 2011, 12:04 AM
Unregistered
Guest
 
Posts: n/a
Default Re: ISRO space engineering entrance exam syllabus after 12th

sir iwould like to attend ISRO SPACE ENGINEERING ENTRANCE EXAM after completing my 2 studies.when did i apply for next entrance exam, ie exam for 2012 bach?
Reply With Quote
  #53  
20th September 2011, 08:47 PM
Unregistered
Guest
 
Posts: n/a
Default Re: ISRO space engineering entrance exam syllabus after 12th

mukesh
do let me know the date of entrance exam and interval of filling the registration form
Reply With Quote
  #54  
26th September 2011, 09:41 AM
Unregistered
Guest
 
Posts: n/a
Default Re: ISRO space engineering entrance exam syllabus after 12th

plz tell me the aplaying date of isat entrance test?
Reply With Quote
  #55  
10th October 2011, 11:48 AM
Unregistered
Guest
 
Posts: n/a
Default Re: ISRO space engineering entrance exam syllabus after 12th

Presently I am doing 2 course. Can I apply for ISRO space engineering examination 2012?
Reply With Quote
  #56  
19th October 2011, 02:46 AM
vinay21feb
Senior Member+++
 
Join Date: Jul 2011
Posts: 1,952
Default Re: ISRO space engineering entrance exam syllabus after 12th

If you want to go for space research, you must study the science stream. You must score good marks for getting admission into the graduation level. After that you can study engineering degree. For B.Tech course, most of the top colleges are asking minimum 50% of marks. You must pursue the program from a reputed college.
Reply With Quote
  #57  
3rd November 2011, 01:42 PM
Unregistered
Guest
 
Posts: n/a
Default Re: ISRO space engineering entrance exam syllabus after 12th

I want to do my project on ELECTROMAGNETIC WAVES Under guidence of ISRO's scientists .Need direction and help.
what should i do for it ????????
Sandeep Kumar
Reply With Quote
  #58  
6th November 2011, 10:30 PM
Unregistered
Guest
 
Posts: n/a
Default Re: ISRO space engineering entrance exam syllabus after 12th

How many times can we apply for isat examination?
Reply With Quote
  #59  
27th November 2011, 12:00 PM
Unregistered
Guest
 
Posts: n/a
Default Re: ISRO space engineering entrance exam syllabus after 12th

respected sir
i would like to get an application form for engineering entrance exam.please help me to sort out that
Reply With Quote
  #60  
27th November 2011, 08:25 PM
Unregistered
Guest
 
Posts: n/a
Default Re: ISRO space engineering entrance exam syllabus after 12th

i am a student of 12th with PCM.Please give me details of entrance exam date for the year 2012 and how to apply for the exam
Reply With Quote
  #61  
28th November 2011, 12:18 AM
imcoolleone
 
Join Date: Nov 2011
Posts: 190
Default Re: ISRO space engineering entrance exam syllabus after 12th

HI dear,

ISRO conducts Entrance Exam each year in the month of April for selecting candidates Admission in B.Tech courses.

Minimum Qualification: 10 + 2, with 70% marks in maths, physics, and chemistry aggregate for General Category.

Application should be sent/ filled up only ONLINE.
Online application forms will be open from 21.12.2009 to 31.1.2010

Entrance Exam consists of Two papers.
All the questions will be Objective type only.
Questions will be divided into 3 sections, namely Physics, Chemistry and Maths. The detailed syllabus and topics of the questions will be available on the website for the exam period.

Please log on www.iist.ac.in/IIST/ISAT2010 for further details.

Thanks
Reply With Quote
  #62  
3rd December 2011, 10:39 AM
Unregistered
Guest
 
Posts: n/a
Default Re: ISRO space engineering entrance exam syllabus after 12th

sir,
one of my friend want's to appear in isat exam. he has passed 10th class from UP-board and scored 57% and now he is appearing class 12th exam from cbse board , can he apply for isat 2012 exam.
Reply With Quote
  #63  
23rd June 2012, 06:30 PM
Unregistered
Guest
 
Posts: n/a
Default Re: ISRO space engineering entrance exam syllabus after 12th

what is the date of entrance exam after 12 to join isro? in 2012 and 2013?
Reply With Quote
  #64  
24th June 2012, 08:47 PM
aatif1
Senior Member
 
Join Date: Jun 2012
Posts: 123
Default Re: ISRO space engineering entrance exam syllabus after 12th

The ISRO space engineering entrance exam is called ISAT.
The syllabus of ISAT is basically the combined syllabus of class 11 and 12 science.
A detailed syllabus is given below:-

PHYSICS
(Mechanics)
Units and Measurements : The international system of units, Measurement of Length, mass and time, Accuracy, precision of instruments and errors in measurement, Significant figures, Dimension of physical quantities, Dimensional formulae and equations, Dimensional analysis and its applications.
Motion in a straight line : Position, path length and displacement, Average velocity and speed, Instantaneous velocity and speed, Acceleration, Kinematic equations for uniformly accelerated motion, Relative velocity
Motion in a plane : Scalars and Vectors, Multiplication of vectors by real numbers, Addition and Subtraction of vectors- graphical method, Resolution of vectors, Vector addition – analytical method, Motion in a plane, Motion in a plane with constant acceleration, Relative velocity in two dimensions, projectile motion, Uniform circular motion.
Laws of motion : The law of inertia, Newton’s first, second and third law of motion, Conservation of momentum, Equilibrium of particle, Common forces in mechanics, Circular motion
Work, Power and Energy : The work energy theorem, Kinetic and Potential energy, Work-Energy theorem for variable force, The conservation of mechanical energy, Power, The potential energy of a spring, Collisions
System of particles and rotational motion : Centre of mass, Motion of centre of mass, Linear momentum of a system of particles, vector product of two vectors, Angular velocity and linear velocity relations, Torque and angular momentum, Equilibrium of a rigid body, Moment of Inertia, Theorem of perpendicular and parallel axes, Kinematics and Dynamics of rotational motion about a fixed axis, Angular momentum in case of rotation about a fixed axis, Rolling motion
Gravitation : Kepler’s laws, Universal law of gravitation, gravitation constant, Acceleration due to gravity of the earth, Acceleration due to gravity below and above the surface of earth, Gravitational potential energy
Electromagnetism
Electric charges and Fields : Electric charges, Conductors and Insulators, Basic properties of electric charge, Coulomb’s law, Force between multiple charges, Electric field and flux, Electric dipole, Continuous charge distribution, Gauss’s law and its applications
Electrostatic Potential and capacitance : Electrostatic potential, Potential due to a point charge and systems of charges, Potential due to an electric dipole, Equipotential surfaces, Potential energy in an external field, Electrostatics of conductors, Dielectric and polarization, Capacitors and capacitance, The parallel plate capacitor, Combination of capacitors, Energy stored in a capacitor
Current Electricity : Electric current, Electric currents in conductors, Ohm’s law, Drift of electrons and origin of resistivity, Resistivity and its temperature dependence, Electrical energy and power, Combination of resistors (Series and Parallel) , Cells, emf, internal resistance, Cells in series and parallel, Kirchoffs laws, Wheatstone bridge, Meter bridge, and Potentiometer
Moving charges and Magnetism : Magnetic force, Motion in a magnetic field, Motion in a combined electric and magnetic fields, Magnetic field due to a current element and Biot-Savart law, Magnetic field on the axis of a circular current loop, Ampere’s circuital law, The solenoid and toroid, Force between, two parallel currents, Torque and current loop and Magnetic dipole, The moving coil Galvanometer
Magnetism and Matter : The bar magnet, The earth’s magnetism, Magnetic properties of materials, Permanent magnets and electromagnets
Electromagnetic induction : Magnetic flux, Faraday’s law of induction, Lenz’s law and conservation of energy, Motional electromagnetic force, Energy consideration : A quantitative study, Inductance and AC Generator
Alternating current : AC Voltage applied to a resistor, an inductor, a capacitor, Ac Voltage applied to a series LCR circuit, Power in AC Circuit, LC Oscillations, Transformers
Optics and Waves
Ray Optics and Optical Instruments : Reflection of light by spherical mirrors, refraction, Total internal reflection, Refraction at Spherical surfaces and by Lenses, Refraction through a Prism, Dispersion by a prism, Some natural phenomenon due to a sunlight, Optical instruments,
Wave Optics : Huygens Principle, Refraction and reflection of plane waves using Huygens Principle, Coherent and Incoherent addition of waves, Interference of light waves and Young’s experiment, Diffraction, Polarisation
Oscillations : Periodic and oscillatory motions, Simple harmonic motion and uniform circular motion, Velocity and acceleration in simple harmonic motion, Force and energy in simple harmonic motion, Damped SHM and forced oscillations and resonance
Waves : Transverse and longitudinal waves, Displacement and speed of a traveling wave, Principle of superposition of waves, Reflection of waves, Beats, Doppler effect
Dual nature of radiation and matter : Photoelectric effect, Wave theory of light and particle nature of light, Wave nature of matter
Properties of Matter, Thermodynamics
Mechanical properties of solids : Elastic behavior of solids, Stress and strain, Hooke’s law, Applications of elastic behavior of materials

Mechanical properties of fluids : Pressure, Streamline flow, Bernoulli’s principle, Viscosity, Reynold’s number, Surface tension
Thermal properties of matter : Temperature and heat, Measurement of Temperature, Ideal-gas equation and absolute temperature, Thermal expansion, Specific heat capacity, Calorimetry, Change of state, Heat Transfer, Newton’s law of cooling
Thermodynamics : Thermal equilibrium, Zeroth law of thermodynamics, Heat, Internal energy and work, First law of thermodynamics, Specific heat capacity, Thermodynamic state variables and equation of state, Thermodynamic processes, Heat engines, Refrigerators and heat pumps, Second law of thermodynamics, Reversible and irreversible processes, Carnot engine
Kinetic theory : Molecular nature of matter, Behavior of gases, Kinetic theory of an ideal gas, Law of equipartition of energy, Mean free path

Laboratory related questions
1. Vernier calipers, Screw gauge measurements, Traveling microscopes, Spectrometers, Meter bridges, Potentiometers and Wheatstone bridge, Minimum deviation measurements, Refraction and reflection of light experiments etc, Galvanometer, Ammeter, Voltmeter

CHEMISTRY
Inorganic Chemistry
Basic Concepts of Chemistry

Particulate nature of matter, laws of chemical combination, Dalton’s atomic theory: concept of elements, atoms and molecules. Atomic and molecular masses, molecular formula, stoichiometry. Structure of Atom

Atomic number, isotopes and isobars. Different atomic models and limitations, shells and sub-shells, dual nature of matter and light, de Broglie’s relationship, Heisenberg uncertainty principle, orbitals, quantum numbers, shapes of s, p, and d orbitals, Aufbau principle, Pauli exclusion principle and Hund’s rule, electronic configuration of atoms, stability of half filled and completely filled orbitals.

Classification of Elements and Periodicity in Properties Periodic table, periodic trends in properties of elements

Chemical Bonding and Molecular Structure

Valence electrons, ionic bond, covalent bond, bond parameters, Lewis structure, polar character of covalent bond, covalent character of ionic bond, valence bond theory, resonance, geometry of covalent molecules, VSEPR theory, hybridization involving s, p and d orbitals and shapes of some simple molecules, molecular orbital theory of homonuclear diatomic molecules Hydrogen

Occurrence, isotopes, preparation, properties and uses of hydrogen and its compounds. s-Block Elements (Group 1 and Group 2 elements)

Electronic configuration, occurrence, anomalous properties of the first element of each group, diagonal relationship, trends in the variation of properties and in chemical reactivity, uses. Preparation and properties of compounds of Na, Ca, Mg and their biological importance.

p-Block Elements
General Introduction to p-Block Elements Elements of Group 13, 14 15,16, 17and 18

Electronic configuration, occurrence, variation of properties, oxidation states, trends in chemical reactivity, anomalous properties of first element of the group. Chemical and physical properties of boron, aluminium, carbon, silicon, nitrogen, phosphorous, oxygen, sulphur, halogens and important compounds of the elements.

d and f Block Elements
Electronic configuration, occurrence and characteristics of transition metals, general trends in properties of the first row transition metals.

General Principles and Processes of Isolation of Elements

Concentration, oxidation, reduction electrolytic method and refining; occurrence and principles of extraction of aluminium, copper, zinc and iron.

Lanthanides: Electronic configuration, oxidation states, chemical reactivity and lanthanide contraction.

Actinides: Electronic configuration, oxidation states.

Coordination compounds: Ligands, coordination number, colour, magnetic properties and shapes, IUPAC nomenclature of mononuclear coordination compounds, bonding; isomerism, importance of coordination compounds.

Physical Chemistry
States of Matter

Three states of matter, intermolecular interactions, type of bonding, melting and boiling points, molecular, ionic, covalent and metallic solids, amorphous and crystalline solids, unit cell in two dimensional and three dimensional lattices, calculation of density of unit cell, packing in solids, voids, number of atoms per unit cell in a cubic unit cell, point defects, electrical and magnetic properties. Boyle’s law, Charles’ law, Gay Lussac’s law, Avogadro’s law, ideal behaviour, empirical derivation of gas equation, Avogadro’s number, ideal gas equation, deviation from ideal behaviour, liquefaction of gases, critical temperature. Liquid State.

Solutions
Types of solutions, solubility of gases in liquids, solid solutions, colligative properties -relative lowering of vapour pressure, elevation of boiling point, depression of freezing point, osmotic pressure, determination of molecular masses

Thermodynamics
Systems, surroundings, work, heat, energy, extensive and intensive properties, state functions. First law of thermodynamics – internal energy and enthalpy, heat capacity and specific heat, measurement of AU and AH, Hess’s law of constant heat summation, enthalpy of: bond dissociation, combustion, formation, atomization, sublimation, phase transition, ionization, and dilution. Entropy as a state function, free energy change for spontaneous and nonspontaneous process, equilibrium.

Equilibrium
Equilibrium in physical and chemical processes, dynamic nature of equilibrium, law of mass action, equilibrium constant, factors affecting equilibrium – Le Chatelier’s principle; ionic equilibrium -ionization of acids and bases, strong and weak electrolytes, degree of ionization, concept of pH. Hydrolysis of salts, buffer solutions, solubility product, common ion effect.

Redox Reactions

Redox reactions, oxidation number, balancing redox reactions, applications of redox reactions.

Electrochemistry

Conductance in electrolytic solutions, specific and molar conductivity variations of conductivity with concentration, Kohlrausch’s Law, electrolysis and laws of electrolysis, dry cell – electrolytic cells and Galvanic cells; lead accumulator, EMF of a cell, standard electrode potential, Nernst equation and its application to chemical cells, fuel cells; corrosion.

Chemical Kinetics

Rate of a reaction, factors affecting rates of reaction, order and molecularity of a reaction; rate law and specific rate constant, integrated rate equations and half life (only for zero and first order reactions); concept of collision theory.

Surface Chemistry
Physisorption and chemisorption; factors affecting adsorption of gases on solids; catalysis: homogenous and heterogeneous, activity and selectivity: enzyme catalysis; colloidal state: distinction between true solutions, colloids and suspensions, Tyndall effect, Brownian movement, electrophoresis, coagulation; emulsions – types of emulsions.

Nuclear chemistry: Radioactivity: isotopes and isobars; Properties of a, P, and y rays; Kinetics of radioactive decay (decay series excluded), carbon dating; Stability of nuclei with respect to proton-neutron ratio; fission and fusion reactions.

Organic Chemistry
Basic Principles and Techniques

Methods of purification, qualitative and quantitative analysis, classification and IUPAC nomenclature of organic compounds. Electronic displacements in a covalent bond: inductive effect, electromeric effect, resonance and hyper conjugation. Homolytic and heterolytic fission of a covalent bond: free radicals, carbocations, carbanions; electrophiles and nucleophiles, types of organic reactions.

Hydrocarbons
Alkanes, alkenes and alkynes: Nomenclature, isomerism, physical properties, methods of preparation. Conformations (ethane only), structure of double bond (ethene), geometrical isomerism, structure of triple bond (ethyne), chemical reactions.

Aromatic hydrocarbons: Introduction, IUPAC nomenclature; Benzene: resonance, aromaticity; chemical properties: mechanism of electrophilic substitution, influence of functional group in mono-substituted benzene.

Haloalkanes and haloarenes: Nomenclature, nature of C-X bond, physical and chemical properties, mechanism of substitution reactions, environmental effects of compounds

Alcohols, Phenols and Ethers

Nomenclature, methods of preparation, physical and chemical properties, uses. Identification of primary, secondary and tertiary alcohols, mechanism of dehydration. Acidic nature of phenol, electrophilic substitution reactions.

Aldehydes, Ketones and Carboxylic Acids Aldehydes and Ketones: Nomenclature, nature of carbonyl group, methods of preparation, physical and chemical properties. Mechanism of nucleophilic addition, reactivity of alpha hydrogen in aldehydes, acidic nature of carboxylic acids.

Organic Compounds Containing Nitrogen: Amines, cyanides, isocyanaides and diazonium salts

Other topics of importance

Environmental Chemistry
Environmental pollution : Air, water and soil pollution, green chemistry, control of environmental pollution.

Biomolecules ;Carbohydrates, proteins, vitamins, Nucleic Acids Polymers

Natural and synthetic polymers, methods of polymerization, copolymerization. Polymers like polythene, nylon, polyesters, bakelite, rubber.

Chemistry in Everyday Life ; Chemicals in medicines, chemicals in food, cleansing agents and action.

MATHEMATICS
SETS, RELATIONS AND FUNCTIONS:

Sets and their representation; Union, intersection and complement of sets and their algebraic properties; Power set; Relation, Types of relations, equivalence relations, functions;. one-one, into and onto functions, composition of functions.

COMPLEX NUMBERS AND QUADRATIC EQUATIONS:

Complex numbers as ordered pairs of reals, Representation of complex numbers in the form a+ib and their representation in a plane, Argand diagram, algebra of complex numbers, modulus and argument (or amplitude) of a complex number, square root of a complex number, triangle inequality, Quadratic equations in real and complex number system and their solutions. Relation between roots and co-efficients, nature of roots, formation of quadratic equations with given roots.

PERMUTATIONS AND COMBINATIONS:

Fundamental principle of counting, permutation as an arrangement and combination as selection, Meaning of P (n,r) and C (n,r), simple applications.

MATHEMATICAL INDUCTION:

Principle of Mathematical Induction and its simple applications.

BINOMIAL THEOREM AND ITS SIMPLE APPLICATIONS:

Binomial theorem for a positive integral index, general term and middle term, properties of Binomial coefficients and simple applications.

SEQUENCES AND SERIES:

Arithmetic and Geometric progressions, insertion of arithmetic, geometric means between two given numbers. Relation between A.M. and G.M. Sum upto n terms of special series: Sn, Sn2, Sn3. Arithmetico – Geometric progression.

LIMIT, CONTINUITY AND DIFFERENTIABILITY:

Real – valued functions, algebra of functions, polynomials, rational, trigonometric, logarithmic and exponential functions, inverse functions. Graphs of simple functions. Limits, continuity and differentiability. Differentiation of the sum, difference, product and quotient of two functions. Differentiation of trigonometric, inverse trigonometric, logarithmic, exponential, composite and implicit functions; derivatives of order up to two. Rolle’s and Lagrange’s Mean Value Theorems. Applications of derivatives: Rate of change of quantities, monotonic – increasing and decreasing functions, Maxima and minima of functions of one variable, tangents and normals.

INTEGRAL CALCULUS:

Integral as an anti – derivative. Fundamental integrals involving algebraic, trigonometric, exponential and logarithmic functions. Integration by substitution, by parts and by partial fractions. Integration using trigonometric identities.

Integral as limit of a sum. Fundamental Theorem of Calculus. Properties of definite integrals. Evaluation of definite integrals, determining areas of the regions bounded by simple curves in standard form.

Differential Equations:

Ordinary differential equations, their order and degree. Formation of differential equations. Solution of differential equations by the method of separation of variables, solution of homogeneous and linear differential equations.

CO-ORDINATE GEOMETRY:

Cartesian system of rectangular co-ordinates in a plane, distance formula, section formula, locus and its equation, translation of axes, slope of a line, parallel and perpendicular lines, intercepts of a line on the coordinate axes.

Straight lines

Various forms of equations of a line, intersection of lines, angles between two lines, conditions for concurrence of three lines, distance of a point from a line, equations of internal and external bisectors of angles between two lines, coordinates of centroid, orthocentre and circumcentre of a triangle, equation of family of lines passing through the point of intersection of two lines.

Circles, conic sections

Standard form of equation of a circle, general form of the equation of a circle, its radius and centre, equation of a circle when the end points of a diameter are given, points of intersection of a line and a circle with the centre at the origin and condition for a line to be tangent to a circle, equation of the tangent. Sections of cones, equations of conic sections (parabola, ellipse and hyperbola) in standard forms, condition for y = mx + c to be a tangent and point (s) of tangency.

Three Dimensional Geometry:

Coordinates of a point in space, distance between two points, section formula, direction ratios and direction cosines, angle between two intersecting lines. Skew lines, the shortest distance between them and its equation. Equations of a line and a plane in different forms, intersection of a line and a plane, coplanar lines.

MATRICES AND DETERMINANTS:

Matrices, algebra of matrices, types of matrices, determinants and matrices of order two and three. Properties of determinants, evaluation of determinants, area of triangles using determinants. Adjoint and evaluation of inverse of a square matrix using determinants and elementary transformations, Test of consistency and solution of simultaneous linear equations in two or three variables using determinants and matrices.

Vector Algebra:

Vectors and scalars, addition of vectors, components of a vector in two dimensions and three dimensional space, scalar and vector products, scalar and vector triple product.

Trigonometry:

Trigonometrical identities and equations. Trigonometrical functions. Inverse trigonometrical functions and their properties. Heights and Distances.

STATISTICS AND PROBABILITY:
Measures of Dispersion:

Calculation of mean, median, mode of grouped and ungrouped data. Calculation of standard deviation, variance and mean deviation for grouped and ungrouped data.

Probability:
Probability of an event, addition and multiplication theorems of probability, Baye’s theorem, probability distribution of a random variate, Bernoulli trials and Binomial distribution

Space engineering is basically divided into two branches-aeronautical engineering and aerospace engineering.
Reply With Quote
  #65  
9th July 2013, 08:07 PM
Unregistered
Guest
 
Posts: n/a
Default Re: ISRO space engineering entrance exam syllabus after 12th

plz suggest me sum gud books and magazines that would help me to crack ISRO entrance exam.
Reply With Quote
  #66  
5th April 2015, 02:00 PM
Unregistered
Guest
 
Posts: n/a
Default Re: ISRO space engineering entrance exam syllabus after 12th

SIR I CLEARY WANT TO KNOW THAT ONLY 2 CLASS PASSED STUDENT IS ABAIBLE TO GIVE ISRO ENTRANS EXAME , YES OR NO? IF YES THEN TELL ME IN 2015 ENTRANS EXAME DATE.
Reply With Quote
Do you have any question? or have anything to say?



Related Topics:

Thread Replies Last Post
Syllabus of ISRO entrance exam under electrical branch? 30 5th December 2014 05:36 PM
ISRO entrance exam syllabus for electronics and communication engineering students? 77 4th September 2014 03:02 PM
Which is the new entrance exam by isro for space engineering?? 80 27th July 2014 09:24 PM
ISRO space engineering entrance exam syllabus after 12th? 91 2nd May 2014 08:14 PM



Powered by vBulletin® Version 3.8.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Search Engine Optimization by vBSEO 3.3.0
vBulletin Optimisation by vB Optimise.
Please also check: